Metamath Proof Explorer


Theorem metustto

Description: Any two elements of the filter base generated by the metric D can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F = ran a + D -1 0 a
Assertion metustto D PsMet X A F B F A B B A

Proof

Step Hyp Ref Expression
1 metust.1 F = ran a + D -1 0 a
2 simpll a + b + A = D -1 0 a B = D -1 0 b a +
3 2 rpred a + b + A = D -1 0 a B = D -1 0 b a
4 simplr a + b + A = D -1 0 a B = D -1 0 b b +
5 4 rpred a + b + A = D -1 0 a B = D -1 0 b b
6 simpllr a + b + A = D -1 0 a B = D -1 0 b a b b +
7 6 rpred a + b + A = D -1 0 a B = D -1 0 b a b b
8 0xr 0 *
9 8 a1i b a b 0 *
10 simpl b a b b
11 10 rexrd b a b b *
12 0le0 0 0
13 12 a1i b a b 0 0
14 simpr b a b a b
15 icossico 0 * b * 0 0 a b 0 a 0 b
16 9 11 13 14 15 syl22anc b a b 0 a 0 b
17 imass2 0 a 0 b D -1 0 a D -1 0 b
18 16 17 syl b a b D -1 0 a D -1 0 b
19 7 18 sylancom a + b + A = D -1 0 a B = D -1 0 b a b D -1 0 a D -1 0 b
20 simplrl a + b + A = D -1 0 a B = D -1 0 b a b A = D -1 0 a
21 simplrr a + b + A = D -1 0 a B = D -1 0 b a b B = D -1 0 b
22 19 20 21 3sstr4d a + b + A = D -1 0 a B = D -1 0 b a b A B
23 22 orcd a + b + A = D -1 0 a B = D -1 0 b a b A B B A
24 simplll a + b + A = D -1 0 a B = D -1 0 b b a a +
25 24 rpred a + b + A = D -1 0 a B = D -1 0 b b a a
26 8 a1i a b a 0 *
27 simpl a b a a
28 27 rexrd a b a a *
29 12 a1i a b a 0 0
30 simpr a b a b a
31 icossico 0 * a * 0 0 b a 0 b 0 a
32 26 28 29 30 31 syl22anc a b a 0 b 0 a
33 imass2 0 b 0 a D -1 0 b D -1 0 a
34 32 33 syl a b a D -1 0 b D -1 0 a
35 25 34 sylancom a + b + A = D -1 0 a B = D -1 0 b b a D -1 0 b D -1 0 a
36 simplrr a + b + A = D -1 0 a B = D -1 0 b b a B = D -1 0 b
37 simplrl a + b + A = D -1 0 a B = D -1 0 b b a A = D -1 0 a
38 35 36 37 3sstr4d a + b + A = D -1 0 a B = D -1 0 b b a B A
39 38 olcd a + b + A = D -1 0 a B = D -1 0 b b a A B B A
40 3 5 23 39 lecasei a + b + A = D -1 0 a B = D -1 0 b A B B A
41 40 adantlll D PsMet X A F B F a + b + A = D -1 0 a B = D -1 0 b A B B A
42 1 metustel D PsMet X A F a + A = D -1 0 a
43 42 biimpa D PsMet X A F a + A = D -1 0 a
44 43 3adant3 D PsMet X A F B F a + A = D -1 0 a
45 oveq2 a = b 0 a = 0 b
46 45 imaeq2d a = b D -1 0 a = D -1 0 b
47 46 cbvmptv a + D -1 0 a = b + D -1 0 b
48 47 rneqi ran a + D -1 0 a = ran b + D -1 0 b
49 1 48 eqtri F = ran b + D -1 0 b
50 49 metustel D PsMet X B F b + B = D -1 0 b
51 50 biimpa D PsMet X B F b + B = D -1 0 b
52 51 3adant2 D PsMet X A F B F b + B = D -1 0 b
53 reeanv a + b + A = D -1 0 a B = D -1 0 b a + A = D -1 0 a b + B = D -1 0 b
54 44 52 53 sylanbrc D PsMet X A F B F a + b + A = D -1 0 a B = D -1 0 b
55 41 54 r19.29vva D PsMet X A F B F A B B A