Metamath Proof Explorer


Theorem metuust

Description: The uniform structure generated by metric D is a uniform structure. (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion metuust X D PsMet X metUnif D UnifOn X

Proof

Step Hyp Ref Expression
1 metuval D PsMet X metUnif D = X × X filGen ran a + D -1 0 a
2 1 adantl X D PsMet X metUnif D = X × X filGen ran a + D -1 0 a
3 oveq2 a = b 0 a = 0 b
4 3 imaeq2d a = b D -1 0 a = D -1 0 b
5 4 cbvmptv a + D -1 0 a = b + D -1 0 b
6 5 rneqi ran a + D -1 0 a = ran b + D -1 0 b
7 6 metust X D PsMet X X × X filGen ran a + D -1 0 a UnifOn X
8 2 7 eqeltrd X D PsMet X metUnif D UnifOn X