Metamath Proof Explorer


Theorem metuval

Description: Value of the uniform structure generated by metric D . (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion metuval D PsMet X metUnif D = X × X filGen ran a + D -1 0 a

Proof

Step Hyp Ref Expression
1 df-metu metUnif = d ran PsMet dom dom d × dom dom d filGen ran a + d -1 0 a
2 simpr D PsMet X d = D d = D
3 2 dmeqd D PsMet X d = D dom d = dom D
4 3 dmeqd D PsMet X d = D dom dom d = dom dom D
5 psmetdmdm D PsMet X X = dom dom D
6 5 adantr D PsMet X d = D X = dom dom D
7 4 6 eqtr4d D PsMet X d = D dom dom d = X
8 7 sqxpeqd D PsMet X d = D dom dom d × dom dom d = X × X
9 simplr D PsMet X d = D a + d = D
10 9 cnveqd D PsMet X d = D a + d -1 = D -1
11 10 imaeq1d D PsMet X d = D a + d -1 0 a = D -1 0 a
12 11 mpteq2dva D PsMet X d = D a + d -1 0 a = a + D -1 0 a
13 12 rneqd D PsMet X d = D ran a + d -1 0 a = ran a + D -1 0 a
14 8 13 oveq12d D PsMet X d = D dom dom d × dom dom d filGen ran a + d -1 0 a = X × X filGen ran a + D -1 0 a
15 elfvunirn D PsMet X D ran PsMet
16 ovexd D PsMet X X × X filGen ran a + D -1 0 a V
17 1 14 15 16 fvmptd2 D PsMet X metUnif D = X × X filGen ran a + D -1 0 a