Database
BASIC TOPOLOGY
Metric spaces
Basic metric space properties
metxmet
Next ⟩
xmetdmdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
metxmet
Description:
A metric is an extended metric.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
metxmet
⊢
D
∈
Met
⁡
X
→
D
∈
∞Met
⁡
X
Proof
Step
Hyp
Ref
Expression
1
ismet2
⊢
D
∈
Met
⁡
X
↔
D
∈
∞Met
⁡
X
∧
D
:
X
×
X
⟶
ℝ
2
1
simplbi
⊢
D
∈
Met
⁡
X
→
D
∈
∞Met
⁡
X