Metamath Proof Explorer


Theorem mgm0

Description: Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion mgm0 M V Base M = M Mgm

Proof

Step Hyp Ref Expression
1 rzal Base M = x Base M y Base M x + M y Base M
2 1 adantl M V Base M = x Base M y Base M x + M y Base M
3 eqid Base M = Base M
4 eqid + M = + M
5 3 4 ismgm M V M Mgm x Base M y Base M x + M y Base M
6 5 adantr M V Base M = M Mgm x Base M y Base M x + M y Base M
7 2 6 mpbird M V Base M = M Mgm