Metamath Proof Explorer


Theorem mgm0b

Description: The structure with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion mgm0b Base ndx + ndx O Mgm

Proof

Step Hyp Ref Expression
1 prex Base ndx + ndx O V
2 0ex V
3 eqid Base ndx + ndx O = Base ndx + ndx O
4 3 grpbase V = Base Base ndx + ndx O
5 4 eqcomd V Base Base ndx + ndx O =
6 2 5 ax-mp Base Base ndx + ndx O =
7 mgm0 Base ndx + ndx O V Base Base ndx + ndx O = Base ndx + ndx O Mgm
8 1 6 7 mp2an Base ndx + ndx O Mgm