| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgmhmf1o.b |
|
| 2 |
|
mgmhmf1o.c |
|
| 3 |
|
mgmhmrcl |
|
| 4 |
3
|
ancomd |
|
| 5 |
4
|
adantr |
|
| 6 |
|
f1ocnv |
|
| 7 |
6
|
adantl |
|
| 8 |
|
f1of |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
simpll |
|
| 11 |
9
|
adantr |
|
| 12 |
|
simprl |
|
| 13 |
11 12
|
ffvelcdmd |
|
| 14 |
|
simprr |
|
| 15 |
11 14
|
ffvelcdmd |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
1 16 17
|
mgmhmlin |
|
| 19 |
10 13 15 18
|
syl3anc |
|
| 20 |
|
simplr |
|
| 21 |
|
f1ocnvfv2 |
|
| 22 |
20 12 21
|
syl2anc |
|
| 23 |
|
f1ocnvfv2 |
|
| 24 |
20 14 23
|
syl2anc |
|
| 25 |
22 24
|
oveq12d |
|
| 26 |
19 25
|
eqtrd |
|
| 27 |
3
|
simpld |
|
| 28 |
27
|
adantr |
|
| 29 |
28
|
adantr |
|
| 30 |
1 16
|
mgmcl |
|
| 31 |
29 13 15 30
|
syl3anc |
|
| 32 |
|
f1ocnvfv |
|
| 33 |
20 31 32
|
syl2anc |
|
| 34 |
26 33
|
mpd |
|
| 35 |
34
|
ralrimivva |
|
| 36 |
9 35
|
jca |
|
| 37 |
2 1 17 16
|
ismgmhm |
|
| 38 |
5 36 37
|
sylanbrc |
|
| 39 |
1 2
|
mgmhmf |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
ffnd |
|
| 42 |
2 1
|
mgmhmf |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
ffnd |
|
| 45 |
|
dff1o4 |
|
| 46 |
41 44 45
|
sylanbrc |
|
| 47 |
38 46
|
impbida |
|