Metamath Proof Explorer


Theorem mgmidcl

Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b B = Base G
ismgmid.o 0 ˙ = 0 G
ismgmid.p + ˙ = + G
mgmidcl.e φ e B x B e + ˙ x = x x + ˙ e = x
Assertion mgmidcl φ 0 ˙ B

Proof

Step Hyp Ref Expression
1 ismgmid.b B = Base G
2 ismgmid.o 0 ˙ = 0 G
3 ismgmid.p + ˙ = + G
4 mgmidcl.e φ e B x B e + ˙ x = x x + ˙ e = x
5 eqid 0 ˙ = 0 ˙
6 1 2 3 4 ismgmid φ 0 ˙ B x B 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x 0 ˙ = 0 ˙
7 5 6 mpbiri φ 0 ˙ B x B 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
8 7 simpld φ 0 ˙ B