Metamath Proof Explorer


Theorem mgpf

Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Assertion mgpf mulGrp Ring : Ring Mnd

Proof

Step Hyp Ref Expression
1 fnmgp mulGrp Fn V
2 ssv Ring V
3 fnssres mulGrp Fn V Ring V mulGrp Ring Fn Ring
4 1 2 3 mp2an mulGrp Ring Fn Ring
5 fvres a Ring mulGrp Ring a = mulGrp a
6 eqid mulGrp a = mulGrp a
7 6 ringmgp a Ring mulGrp a Mnd
8 5 7 eqeltrd a Ring mulGrp Ring a Mnd
9 8 rgen a Ring mulGrp Ring a Mnd
10 ffnfv mulGrp Ring : Ring Mnd mulGrp Ring Fn Ring a Ring mulGrp Ring a Mnd
11 4 9 10 mpbir2an mulGrp Ring : Ring Mnd