Database
BASIC ALGEBRAIC STRUCTURES
Rings
Multiplicative Group
mgplem
Next ⟩
mgpbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
mgplem
Description:
Lemma for
mgpbas
.
(Contributed by
Mario Carneiro
, 5-Oct-2015)
Ref
Expression
Hypotheses
mgpbas.1
⊢
M
=
mulGrp
R
mgplem.2
⊢
E
=
Slot
N
mgplem.3
⊢
N
∈
ℕ
mgplem.4
⊢
N
≠
2
Assertion
mgplem
⊢
E
⁡
R
=
E
⁡
M
Proof
Step
Hyp
Ref
Expression
1
mgpbas.1
⊢
M
=
mulGrp
R
2
mgplem.2
⊢
E
=
Slot
N
3
mgplem.3
⊢
N
∈
ℕ
4
mgplem.4
⊢
N
≠
2
5
2
3
ndxid
⊢
E
=
Slot
E
⁡
ndx
6
2
3
ndxarg
⊢
E
⁡
ndx
=
N
7
plusgndx
⊢
+
ndx
=
2
8
6
7
neeq12i
⊢
E
⁡
ndx
≠
+
ndx
↔
N
≠
2
9
4
8
mpbir
⊢
E
⁡
ndx
≠
+
ndx
10
5
9
setsnid
⊢
E
⁡
R
=
E
⁡
R
sSet
+
ndx
⋅
R
11
eqid
⊢
⋅
R
=
⋅
R
12
1
11
mgpval
⊢
M
=
R
sSet
+
ndx
⋅
R
13
12
fveq2i
⊢
E
⁡
M
=
E
⁡
R
sSet
+
ndx
⋅
R
14
10
13
eqtr4i
⊢
E
⁡
R
=
E
⁡
M