Metamath Proof Explorer


Theorem mgplem

Description: Lemma for mgpbas . (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mgpbas.1 M = mulGrp R
mgplem.2 E = Slot N
mgplem.3 N
mgplem.4 N 2
Assertion mgplem E R = E M

Proof

Step Hyp Ref Expression
1 mgpbas.1 M = mulGrp R
2 mgplem.2 E = Slot N
3 mgplem.3 N
4 mgplem.4 N 2
5 2 3 ndxid E = Slot E ndx
6 2 3 ndxarg E ndx = N
7 plusgndx + ndx = 2
8 6 7 neeq12i E ndx + ndx N 2
9 4 8 mpbir E ndx + ndx
10 5 9 setsnid E R = E R sSet + ndx R
11 eqid R = R
12 1 11 mgpval M = R sSet + ndx R
13 12 fveq2i E M = E R sSet + ndx R
14 10 13 eqtr4i E R = E M