Database
BASIC ALGEBRAIC STRUCTURES
Rings
Multiplicative Group
mgpsca
Metamath Proof Explorer
Description: The multiplication monoid has the same (if any) scalars as the
original ring. Mostly to simplify pwsmgp . (Contributed by Mario
Carneiro , 12-Mar-2015) (Revised by Mario Carneiro , 5-May-2015)
Ref
Expression
Hypotheses
mgpbas.1
⊢ M = mulGrp R
mgpsca.s
⊢ S = Scalar ⁡ R
Assertion
mgpsca
⊢ S = Scalar ⁡ M
Proof
Step
Hyp
Ref
Expression
1
mgpbas.1
⊢ M = mulGrp R
2
mgpsca.s
⊢ S = Scalar ⁡ R
3
df-sca
⊢ Scalar = Slot 5
4
5nn
⊢ 5 ∈ ℕ
5
2re
⊢ 2 ∈ ℝ
6
2lt5
⊢ 2 < 5
7
5 6
gtneii
⊢ 5 ≠ 2
8
1 3 4 7
mgplem
⊢ Scalar ⁡ R = Scalar ⁡ M
9
2 8
eqtri
⊢ S = Scalar ⁡ M