Metamath Proof Explorer


Theorem mgptset

Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis mgpbas.1 M = mulGrp R
Assertion mgptset TopSet R = TopSet M

Proof

Step Hyp Ref Expression
1 mgpbas.1 M = mulGrp R
2 df-tset TopSet = Slot 9
3 9nn 9
4 2re 2
5 2lt9 2 < 9
6 4 5 gtneii 9 2
7 1 2 3 6 mgplem TopSet R = TopSet M