Metamath Proof Explorer


Theorem mgpval

Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014)

Ref Expression
Hypotheses mgpval.1 M = mulGrp R
mgpval.2 · ˙ = R
Assertion mgpval M = R sSet + ndx · ˙

Proof

Step Hyp Ref Expression
1 mgpval.1 M = mulGrp R
2 mgpval.2 · ˙ = R
3 id r = R r = R
4 fveq2 r = R r = R
5 4 2 eqtr4di r = R r = · ˙
6 5 opeq2d r = R + ndx r = + ndx · ˙
7 3 6 oveq12d r = R r sSet + ndx r = R sSet + ndx · ˙
8 df-mgp mulGrp = r V r sSet + ndx r
9 ovex R sSet + ndx · ˙ V
10 7 8 9 fvmpt R V mulGrp R = R sSet + ndx · ˙
11 fvprc ¬ R V mulGrp R =
12 reldmsets Rel dom sSet
13 12 ovprc1 ¬ R V R sSet + ndx · ˙ =
14 11 13 eqtr4d ¬ R V mulGrp R = R sSet + ndx · ˙
15 10 14 pm2.61i mulGrp R = R sSet + ndx · ˙
16 1 15 eqtri M = R sSet + ndx · ˙