Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
mhm0
Next ⟩
idmhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
mhm0
Description:
A monoid homomorphism preserves zero.
(Contributed by
Mario Carneiro
, 7-Mar-2015)
Ref
Expression
Hypotheses
mhm0.z
⊢
0
˙
=
0
S
mhm0.y
⊢
Y
=
0
T
Assertion
mhm0
⊢
F
∈
S
MndHom
T
→
F
⁡
0
˙
=
Y
Proof
Step
Hyp
Ref
Expression
1
mhm0.z
⊢
0
˙
=
0
S
2
mhm0.y
⊢
Y
=
0
T
3
eqid
⊢
Base
S
=
Base
S
4
eqid
⊢
Base
T
=
Base
T
5
eqid
⊢
+
S
=
+
S
6
eqid
⊢
+
T
=
+
T
7
3
4
5
6
1
2
ismhm
⊢
F
∈
S
MndHom
T
↔
S
∈
Mnd
∧
T
∈
Mnd
∧
F
:
Base
S
⟶
Base
T
∧
∀
x
∈
Base
S
∀
y
∈
Base
S
F
⁡
x
+
S
y
=
F
⁡
x
+
T
F
⁡
y
∧
F
⁡
0
˙
=
Y
8
7
simprbi
⊢
F
∈
S
MndHom
T
→
F
:
Base
S
⟶
Base
T
∧
∀
x
∈
Base
S
∀
y
∈
Base
S
F
⁡
x
+
S
y
=
F
⁡
x
+
T
F
⁡
y
∧
F
⁡
0
˙
=
Y
9
8
simp3d
⊢
F
∈
S
MndHom
T
→
F
⁡
0
˙
=
Y