Metamath Proof Explorer


Theorem mhm0

Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses mhm0.z 0 ˙ = 0 S
mhm0.y Y = 0 T
Assertion mhm0 F S MndHom T F 0 ˙ = Y

Proof

Step Hyp Ref Expression
1 mhm0.z 0 ˙ = 0 S
2 mhm0.y Y = 0 T
3 eqid Base S = Base S
4 eqid Base T = Base T
5 eqid + S = + S
6 eqid + T = + T
7 3 4 5 6 1 2 ismhm F S MndHom T S Mnd T Mnd F : Base S Base T x Base S y Base S F x + S y = F x + T F y F 0 ˙ = Y
8 7 simprbi F S MndHom T F : Base S Base T x Base S y Base S F x + S y = F x + T F y F 0 ˙ = Y
9 8 simp3d F S MndHom T F 0 ˙ = Y