Step |
Hyp |
Ref |
Expression |
1 |
|
mhmrcl2 |
|
2 |
|
mhmrcl1 |
|
3 |
1 2
|
anim12ci |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5
|
mhmf |
|
7 |
|
eqid |
|
8 |
7 4
|
mhmf |
|
9 |
|
fco |
|
10 |
6 8 9
|
syl2an |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
7 11 12
|
mhmlin |
|
14 |
13
|
3expb |
|
15 |
14
|
adantll |
|
16 |
15
|
fveq2d |
|
17 |
|
simpll |
|
18 |
8
|
ad2antlr |
|
19 |
|
simprl |
|
20 |
18 19
|
ffvelrnd |
|
21 |
|
simprr |
|
22 |
18 21
|
ffvelrnd |
|
23 |
|
eqid |
|
24 |
4 12 23
|
mhmlin |
|
25 |
17 20 22 24
|
syl3anc |
|
26 |
16 25
|
eqtrd |
|
27 |
2
|
adantl |
|
28 |
7 11
|
mndcl |
|
29 |
28
|
3expb |
|
30 |
27 29
|
sylan |
|
31 |
|
fvco3 |
|
32 |
18 30 31
|
syl2anc |
|
33 |
|
fvco3 |
|
34 |
18 19 33
|
syl2anc |
|
35 |
|
fvco3 |
|
36 |
18 21 35
|
syl2anc |
|
37 |
34 36
|
oveq12d |
|
38 |
26 32 37
|
3eqtr4d |
|
39 |
38
|
ralrimivva |
|
40 |
8
|
adantl |
|
41 |
|
eqid |
|
42 |
7 41
|
mndidcl |
|
43 |
27 42
|
syl |
|
44 |
|
fvco3 |
|
45 |
40 43 44
|
syl2anc |
|
46 |
|
eqid |
|
47 |
41 46
|
mhm0 |
|
48 |
47
|
adantl |
|
49 |
48
|
fveq2d |
|
50 |
|
eqid |
|
51 |
46 50
|
mhm0 |
|
52 |
51
|
adantr |
|
53 |
45 49 52
|
3eqtrd |
|
54 |
10 39 53
|
3jca |
|
55 |
7 5 11 23 41 50
|
ismhm |
|
56 |
3 54 55
|
sylanbrc |
|