Metamath Proof Explorer


Theorem mhmco

Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion mhmco F T MndHom U G S MndHom T F G S MndHom U

Proof

Step Hyp Ref Expression
1 mhmrcl2 F T MndHom U U Mnd
2 mhmrcl1 G S MndHom T S Mnd
3 1 2 anim12ci F T MndHom U G S MndHom T S Mnd U Mnd
4 eqid Base T = Base T
5 eqid Base U = Base U
6 4 5 mhmf F T MndHom U F : Base T Base U
7 eqid Base S = Base S
8 7 4 mhmf G S MndHom T G : Base S Base T
9 fco F : Base T Base U G : Base S Base T F G : Base S Base U
10 6 8 9 syl2an F T MndHom U G S MndHom T F G : Base S Base U
11 eqid + S = + S
12 eqid + T = + T
13 7 11 12 mhmlin G S MndHom T x Base S y Base S G x + S y = G x + T G y
14 13 3expb G S MndHom T x Base S y Base S G x + S y = G x + T G y
15 14 adantll F T MndHom U G S MndHom T x Base S y Base S G x + S y = G x + T G y
16 15 fveq2d F T MndHom U G S MndHom T x Base S y Base S F G x + S y = F G x + T G y
17 simpll F T MndHom U G S MndHom T x Base S y Base S F T MndHom U
18 8 ad2antlr F T MndHom U G S MndHom T x Base S y Base S G : Base S Base T
19 simprl F T MndHom U G S MndHom T x Base S y Base S x Base S
20 18 19 ffvelrnd F T MndHom U G S MndHom T x Base S y Base S G x Base T
21 simprr F T MndHom U G S MndHom T x Base S y Base S y Base S
22 18 21 ffvelrnd F T MndHom U G S MndHom T x Base S y Base S G y Base T
23 eqid + U = + U
24 4 12 23 mhmlin F T MndHom U G x Base T G y Base T F G x + T G y = F G x + U F G y
25 17 20 22 24 syl3anc F T MndHom U G S MndHom T x Base S y Base S F G x + T G y = F G x + U F G y
26 16 25 eqtrd F T MndHom U G S MndHom T x Base S y Base S F G x + S y = F G x + U F G y
27 2 adantl F T MndHom U G S MndHom T S Mnd
28 7 11 mndcl S Mnd x Base S y Base S x + S y Base S
29 28 3expb S Mnd x Base S y Base S x + S y Base S
30 27 29 sylan F T MndHom U G S MndHom T x Base S y Base S x + S y Base S
31 fvco3 G : Base S Base T x + S y Base S F G x + S y = F G x + S y
32 18 30 31 syl2anc F T MndHom U G S MndHom T x Base S y Base S F G x + S y = F G x + S y
33 fvco3 G : Base S Base T x Base S F G x = F G x
34 18 19 33 syl2anc F T MndHom U G S MndHom T x Base S y Base S F G x = F G x
35 fvco3 G : Base S Base T y Base S F G y = F G y
36 18 21 35 syl2anc F T MndHom U G S MndHom T x Base S y Base S F G y = F G y
37 34 36 oveq12d F T MndHom U G S MndHom T x Base S y Base S F G x + U F G y = F G x + U F G y
38 26 32 37 3eqtr4d F T MndHom U G S MndHom T x Base S y Base S F G x + S y = F G x + U F G y
39 38 ralrimivva F T MndHom U G S MndHom T x Base S y Base S F G x + S y = F G x + U F G y
40 8 adantl F T MndHom U G S MndHom T G : Base S Base T
41 eqid 0 S = 0 S
42 7 41 mndidcl S Mnd 0 S Base S
43 27 42 syl F T MndHom U G S MndHom T 0 S Base S
44 fvco3 G : Base S Base T 0 S Base S F G 0 S = F G 0 S
45 40 43 44 syl2anc F T MndHom U G S MndHom T F G 0 S = F G 0 S
46 eqid 0 T = 0 T
47 41 46 mhm0 G S MndHom T G 0 S = 0 T
48 47 adantl F T MndHom U G S MndHom T G 0 S = 0 T
49 48 fveq2d F T MndHom U G S MndHom T F G 0 S = F 0 T
50 eqid 0 U = 0 U
51 46 50 mhm0 F T MndHom U F 0 T = 0 U
52 51 adantr F T MndHom U G S MndHom T F 0 T = 0 U
53 45 49 52 3eqtrd F T MndHom U G S MndHom T F G 0 S = 0 U
54 10 39 53 3jca F T MndHom U G S MndHom T F G : Base S Base U x Base S y Base S F G x + S y = F G x + U F G y F G 0 S = 0 U
55 7 5 11 23 41 50 ismhm F G S MndHom U S Mnd U Mnd F G : Base S Base U x Base S y Base S F G x + S y = F G x + U F G y F G 0 S = 0 U
56 3 54 55 sylanbrc F T MndHom U G S MndHom T F G S MndHom U