Metamath Proof Explorer


Theorem mhmcoply1

Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 20-May-2025)

Ref Expression
Hypotheses mhmcoply1.p P = Poly 1 R
mhmcoply1.q Q = Poly 1 S
mhmcoply1.b B = Base P
mhmcoply1.c C = Base Q
mhmcoply1.h φ H R MndHom S
mhmcoply1.f φ F B
Assertion mhmcoply1 φ H F C

Proof

Step Hyp Ref Expression
1 mhmcoply1.p P = Poly 1 R
2 mhmcoply1.q Q = Poly 1 S
3 mhmcoply1.b B = Base P
4 mhmcoply1.c C = Base Q
5 mhmcoply1.h φ H R MndHom S
6 mhmcoply1.f φ F B
7 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
8 eqid 1 𝑜 mPoly S = 1 𝑜 mPoly S
9 1 3 ply1bas B = Base 1 𝑜 mPoly R
10 2 4 ply1bas C = Base 1 𝑜 mPoly S
11 7 8 9 10 5 6 mhmcompl φ H F C