Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
1 2
|
mhmf |
|
4 |
3
|
adantr |
|
5 |
4
|
ffnd |
|
6 |
1 2
|
mhmf |
|
7 |
6
|
adantl |
|
8 |
7
|
ffnd |
|
9 |
|
fndmin |
|
10 |
5 8 9
|
syl2anc |
|
11 |
|
ssrab2 |
|
12 |
11
|
a1i |
|
13 |
|
fveq2 |
|
14 |
|
fveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
|
mhmrcl1 |
|
17 |
16
|
adantr |
|
18 |
|
eqid |
|
19 |
1 18
|
mndidcl |
|
20 |
17 19
|
syl |
|
21 |
|
eqid |
|
22 |
18 21
|
mhm0 |
|
23 |
22
|
adantr |
|
24 |
18 21
|
mhm0 |
|
25 |
24
|
adantl |
|
26 |
23 25
|
eqtr4d |
|
27 |
15 20 26
|
elrabd |
|
28 |
|
fveq2 |
|
29 |
|
fveq2 |
|
30 |
28 29
|
eqeq12d |
|
31 |
17
|
ad2antrr |
|
32 |
|
simplrl |
|
33 |
|
simprl |
|
34 |
|
eqid |
|
35 |
1 34
|
mndcl |
|
36 |
31 32 33 35
|
syl3anc |
|
37 |
|
simplll |
|
38 |
|
eqid |
|
39 |
1 34 38
|
mhmlin |
|
40 |
37 32 33 39
|
syl3anc |
|
41 |
|
simpllr |
|
42 |
1 34 38
|
mhmlin |
|
43 |
41 32 33 42
|
syl3anc |
|
44 |
|
simplrr |
|
45 |
|
simprr |
|
46 |
44 45
|
oveq12d |
|
47 |
43 46
|
eqtr4d |
|
48 |
40 47
|
eqtr4d |
|
49 |
30 36 48
|
elrabd |
|
50 |
49
|
expr |
|
51 |
50
|
ralrimiva |
|
52 |
|
fveq2 |
|
53 |
|
fveq2 |
|
54 |
52 53
|
eqeq12d |
|
55 |
54
|
ralrab |
|
56 |
51 55
|
sylibr |
|
57 |
56
|
expr |
|
58 |
57
|
ralrimiva |
|
59 |
|
fveq2 |
|
60 |
|
fveq2 |
|
61 |
59 60
|
eqeq12d |
|
62 |
61
|
ralrab |
|
63 |
58 62
|
sylibr |
|
64 |
1 18 34
|
issubm |
|
65 |
17 64
|
syl |
|
66 |
12 27 63 65
|
mpbir3and |
|
67 |
10 66
|
eqeltrd |
|