| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
mhmf |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
ffnd |
|
| 6 |
1 2
|
mhmf |
|
| 7 |
6
|
adantl |
|
| 8 |
7
|
ffnd |
|
| 9 |
|
fndmin |
|
| 10 |
5 8 9
|
syl2anc |
|
| 11 |
|
ssrab2 |
|
| 12 |
11
|
a1i |
|
| 13 |
|
fveq2 |
|
| 14 |
|
fveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
|
mhmrcl1 |
|
| 17 |
16
|
adantr |
|
| 18 |
|
eqid |
|
| 19 |
1 18
|
mndidcl |
|
| 20 |
17 19
|
syl |
|
| 21 |
|
eqid |
|
| 22 |
18 21
|
mhm0 |
|
| 23 |
22
|
adantr |
|
| 24 |
18 21
|
mhm0 |
|
| 25 |
24
|
adantl |
|
| 26 |
23 25
|
eqtr4d |
|
| 27 |
15 20 26
|
elrabd |
|
| 28 |
|
fveq2 |
|
| 29 |
|
fveq2 |
|
| 30 |
28 29
|
eqeq12d |
|
| 31 |
17
|
ad2antrr |
|
| 32 |
|
simplrl |
|
| 33 |
|
simprl |
|
| 34 |
|
eqid |
|
| 35 |
1 34
|
mndcl |
|
| 36 |
31 32 33 35
|
syl3anc |
|
| 37 |
|
simplll |
|
| 38 |
|
eqid |
|
| 39 |
1 34 38
|
mhmlin |
|
| 40 |
37 32 33 39
|
syl3anc |
|
| 41 |
|
simpllr |
|
| 42 |
1 34 38
|
mhmlin |
|
| 43 |
41 32 33 42
|
syl3anc |
|
| 44 |
|
simplrr |
|
| 45 |
|
simprr |
|
| 46 |
44 45
|
oveq12d |
|
| 47 |
43 46
|
eqtr4d |
|
| 48 |
40 47
|
eqtr4d |
|
| 49 |
30 36 48
|
elrabd |
|
| 50 |
49
|
expr |
|
| 51 |
50
|
ralrimiva |
|
| 52 |
|
fveq2 |
|
| 53 |
|
fveq2 |
|
| 54 |
52 53
|
eqeq12d |
|
| 55 |
54
|
ralrab |
|
| 56 |
51 55
|
sylibr |
|
| 57 |
56
|
expr |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
|
fveq2 |
|
| 60 |
|
fveq2 |
|
| 61 |
59 60
|
eqeq12d |
|
| 62 |
61
|
ralrab |
|
| 63 |
58 62
|
sylibr |
|
| 64 |
1 18 34
|
issubm |
|
| 65 |
17 64
|
syl |
|
| 66 |
12 27 63 65
|
mpbir3and |
|
| 67 |
10 66
|
eqeltrd |
|