Metamath Proof Explorer


Theorem mhmeql

Description: The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion mhmeql F S MndHom T G S MndHom T dom F G SubMnd S

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 1 2 mhmf F S MndHom T F : Base S Base T
4 3 adantr F S MndHom T G S MndHom T F : Base S Base T
5 4 ffnd F S MndHom T G S MndHom T F Fn Base S
6 1 2 mhmf G S MndHom T G : Base S Base T
7 6 adantl F S MndHom T G S MndHom T G : Base S Base T
8 7 ffnd F S MndHom T G S MndHom T G Fn Base S
9 fndmin F Fn Base S G Fn Base S dom F G = z Base S | F z = G z
10 5 8 9 syl2anc F S MndHom T G S MndHom T dom F G = z Base S | F z = G z
11 ssrab2 z Base S | F z = G z Base S
12 11 a1i F S MndHom T G S MndHom T z Base S | F z = G z Base S
13 fveq2 z = 0 S F z = F 0 S
14 fveq2 z = 0 S G z = G 0 S
15 13 14 eqeq12d z = 0 S F z = G z F 0 S = G 0 S
16 mhmrcl1 F S MndHom T S Mnd
17 16 adantr F S MndHom T G S MndHom T S Mnd
18 eqid 0 S = 0 S
19 1 18 mndidcl S Mnd 0 S Base S
20 17 19 syl F S MndHom T G S MndHom T 0 S Base S
21 eqid 0 T = 0 T
22 18 21 mhm0 F S MndHom T F 0 S = 0 T
23 22 adantr F S MndHom T G S MndHom T F 0 S = 0 T
24 18 21 mhm0 G S MndHom T G 0 S = 0 T
25 24 adantl F S MndHom T G S MndHom T G 0 S = 0 T
26 23 25 eqtr4d F S MndHom T G S MndHom T F 0 S = G 0 S
27 15 20 26 elrabd F S MndHom T G S MndHom T 0 S z Base S | F z = G z
28 fveq2 z = x + S y F z = F x + S y
29 fveq2 z = x + S y G z = G x + S y
30 28 29 eqeq12d z = x + S y F z = G z F x + S y = G x + S y
31 17 ad2antrr F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y S Mnd
32 simplrl F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y x Base S
33 simprl F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y y Base S
34 eqid + S = + S
35 1 34 mndcl S Mnd x Base S y Base S x + S y Base S
36 31 32 33 35 syl3anc F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y x + S y Base S
37 simplll F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y F S MndHom T
38 eqid + T = + T
39 1 34 38 mhmlin F S MndHom T x Base S y Base S F x + S y = F x + T F y
40 37 32 33 39 syl3anc F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y F x + S y = F x + T F y
41 simpllr F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y G S MndHom T
42 1 34 38 mhmlin G S MndHom T x Base S y Base S G x + S y = G x + T G y
43 41 32 33 42 syl3anc F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y G x + S y = G x + T G y
44 simplrr F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y F x = G x
45 simprr F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y F y = G y
46 44 45 oveq12d F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y F x + T F y = G x + T G y
47 43 46 eqtr4d F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y G x + S y = F x + T F y
48 40 47 eqtr4d F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y F x + S y = G x + S y
49 30 36 48 elrabd F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y x + S y z Base S | F z = G z
50 49 expr F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y x + S y z Base S | F z = G z
51 50 ralrimiva F S MndHom T G S MndHom T x Base S F x = G x y Base S F y = G y x + S y z Base S | F z = G z
52 fveq2 z = y F z = F y
53 fveq2 z = y G z = G y
54 52 53 eqeq12d z = y F z = G z F y = G y
55 54 ralrab y z Base S | F z = G z x + S y z Base S | F z = G z y Base S F y = G y x + S y z Base S | F z = G z
56 51 55 sylibr F S MndHom T G S MndHom T x Base S F x = G x y z Base S | F z = G z x + S y z Base S | F z = G z
57 56 expr F S MndHom T G S MndHom T x Base S F x = G x y z Base S | F z = G z x + S y z Base S | F z = G z
58 57 ralrimiva F S MndHom T G S MndHom T x Base S F x = G x y z Base S | F z = G z x + S y z Base S | F z = G z
59 fveq2 z = x F z = F x
60 fveq2 z = x G z = G x
61 59 60 eqeq12d z = x F z = G z F x = G x
62 61 ralrab x z Base S | F z = G z y z Base S | F z = G z x + S y z Base S | F z = G z x Base S F x = G x y z Base S | F z = G z x + S y z Base S | F z = G z
63 58 62 sylibr F S MndHom T G S MndHom T x z Base S | F z = G z y z Base S | F z = G z x + S y z Base S | F z = G z
64 1 18 34 issubm S Mnd z Base S | F z = G z SubMnd S z Base S | F z = G z Base S 0 S z Base S | F z = G z x z Base S | F z = G z y z Base S | F z = G z x + S y z Base S | F z = G z
65 17 64 syl F S MndHom T G S MndHom T z Base S | F z = G z SubMnd S z Base S | F z = G z Base S 0 S z Base S | F z = G z x z Base S | F z = G z y z Base S | F z = G z x + S y z Base S | F z = G z
66 12 27 63 65 mpbir3and F S MndHom T G S MndHom T z Base S | F z = G z SubMnd S
67 10 66 eqeltrd F S MndHom T G S MndHom T dom F G SubMnd S