Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
mhmf
Next ⟩
mhmpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
mhmf
Description:
A monoid homomorphism is a function.
(Contributed by
Mario Carneiro
, 7-Mar-2015)
Ref
Expression
Hypotheses
mhmf.b
⊢
B
=
Base
S
mhmf.c
⊢
C
=
Base
T
Assertion
mhmf
⊢
F
∈
S
MndHom
T
→
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
mhmf.b
⊢
B
=
Base
S
2
mhmf.c
⊢
C
=
Base
T
3
eqid
⊢
+
S
=
+
S
4
eqid
⊢
+
T
=
+
T
5
eqid
⊢
0
S
=
0
S
6
eqid
⊢
0
T
=
0
T
7
1
2
3
4
5
6
ismhm
⊢
F
∈
S
MndHom
T
↔
S
∈
Mnd
∧
T
∈
Mnd
∧
F
:
B
⟶
C
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
+
S
y
=
F
⁡
x
+
T
F
⁡
y
∧
F
⁡
0
S
=
0
T
8
7
simprbi
⊢
F
∈
S
MndHom
T
→
F
:
B
⟶
C
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
+
S
y
=
F
⁡
x
+
T
F
⁡
y
∧
F
⁡
0
S
=
0
T
9
8
simp1d
⊢
F
∈
S
MndHom
T
→
F
:
B
⟶
C