Step |
Hyp |
Ref |
Expression |
1 |
|
mhmf1o.b |
|
2 |
|
mhmf1o.c |
|
3 |
|
mhmrcl2 |
|
4 |
|
mhmrcl1 |
|
5 |
3 4
|
jca |
|
6 |
5
|
adantr |
|
7 |
|
f1ocnv |
|
8 |
7
|
adantl |
|
9 |
|
f1of |
|
10 |
8 9
|
syl |
|
11 |
|
simpll |
|
12 |
10
|
adantr |
|
13 |
|
simprl |
|
14 |
12 13
|
ffvelrnd |
|
15 |
|
simprr |
|
16 |
12 15
|
ffvelrnd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
1 17 18
|
mhmlin |
|
20 |
11 14 16 19
|
syl3anc |
|
21 |
|
simpr |
|
22 |
21
|
adantr |
|
23 |
|
f1ocnvfv2 |
|
24 |
22 13 23
|
syl2anc |
|
25 |
|
f1ocnvfv2 |
|
26 |
22 15 25
|
syl2anc |
|
27 |
24 26
|
oveq12d |
|
28 |
20 27
|
eqtrd |
|
29 |
4
|
adantr |
|
30 |
29
|
adantr |
|
31 |
1 17
|
mndcl |
|
32 |
30 14 16 31
|
syl3anc |
|
33 |
|
f1ocnvfv |
|
34 |
22 32 33
|
syl2anc |
|
35 |
28 34
|
mpd |
|
36 |
35
|
ralrimivva |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
37 38
|
mhm0 |
|
40 |
39
|
adantr |
|
41 |
40
|
eqcomd |
|
42 |
41
|
fveq2d |
|
43 |
1 37
|
mndidcl |
|
44 |
4 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
|
f1ocnvfv1 |
|
47 |
21 45 46
|
syl2anc |
|
48 |
42 47
|
eqtrd |
|
49 |
10 36 48
|
3jca |
|
50 |
2 1 18 17 38 37
|
ismhm |
|
51 |
6 49 50
|
sylanbrc |
|
52 |
1 2
|
mhmf |
|
53 |
52
|
adantr |
|
54 |
53
|
ffnd |
|
55 |
2 1
|
mhmf |
|
56 |
55
|
adantl |
|
57 |
56
|
ffnd |
|
58 |
|
dff1o4 |
|
59 |
54 57 58
|
sylanbrc |
|
60 |
51 59
|
impbida |
|