Metamath Proof Explorer


Theorem mhmf1o

Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses mhmf1o.b B = Base R
mhmf1o.c C = Base S
Assertion mhmf1o F R MndHom S F : B 1-1 onto C F -1 S MndHom R

Proof

Step Hyp Ref Expression
1 mhmf1o.b B = Base R
2 mhmf1o.c C = Base S
3 mhmrcl2 F R MndHom S S Mnd
4 mhmrcl1 F R MndHom S R Mnd
5 3 4 jca F R MndHom S S Mnd R Mnd
6 5 adantr F R MndHom S F : B 1-1 onto C S Mnd R Mnd
7 f1ocnv F : B 1-1 onto C F -1 : C 1-1 onto B
8 7 adantl F R MndHom S F : B 1-1 onto C F -1 : C 1-1 onto B
9 f1of F -1 : C 1-1 onto B F -1 : C B
10 8 9 syl F R MndHom S F : B 1-1 onto C F -1 : C B
11 simpll F R MndHom S F : B 1-1 onto C x C y C F R MndHom S
12 10 adantr F R MndHom S F : B 1-1 onto C x C y C F -1 : C B
13 simprl F R MndHom S F : B 1-1 onto C x C y C x C
14 12 13 ffvelrnd F R MndHom S F : B 1-1 onto C x C y C F -1 x B
15 simprr F R MndHom S F : B 1-1 onto C x C y C y C
16 12 15 ffvelrnd F R MndHom S F : B 1-1 onto C x C y C F -1 y B
17 eqid + R = + R
18 eqid + S = + S
19 1 17 18 mhmlin F R MndHom S F -1 x B F -1 y B F F -1 x + R F -1 y = F F -1 x + S F F -1 y
20 11 14 16 19 syl3anc F R MndHom S F : B 1-1 onto C x C y C F F -1 x + R F -1 y = F F -1 x + S F F -1 y
21 simpr F R MndHom S F : B 1-1 onto C F : B 1-1 onto C
22 21 adantr F R MndHom S F : B 1-1 onto C x C y C F : B 1-1 onto C
23 f1ocnvfv2 F : B 1-1 onto C x C F F -1 x = x
24 22 13 23 syl2anc F R MndHom S F : B 1-1 onto C x C y C F F -1 x = x
25 f1ocnvfv2 F : B 1-1 onto C y C F F -1 y = y
26 22 15 25 syl2anc F R MndHom S F : B 1-1 onto C x C y C F F -1 y = y
27 24 26 oveq12d F R MndHom S F : B 1-1 onto C x C y C F F -1 x + S F F -1 y = x + S y
28 20 27 eqtrd F R MndHom S F : B 1-1 onto C x C y C F F -1 x + R F -1 y = x + S y
29 4 adantr F R MndHom S F : B 1-1 onto C R Mnd
30 29 adantr F R MndHom S F : B 1-1 onto C x C y C R Mnd
31 1 17 mndcl R Mnd F -1 x B F -1 y B F -1 x + R F -1 y B
32 30 14 16 31 syl3anc F R MndHom S F : B 1-1 onto C x C y C F -1 x + R F -1 y B
33 f1ocnvfv F : B 1-1 onto C F -1 x + R F -1 y B F F -1 x + R F -1 y = x + S y F -1 x + S y = F -1 x + R F -1 y
34 22 32 33 syl2anc F R MndHom S F : B 1-1 onto C x C y C F F -1 x + R F -1 y = x + S y F -1 x + S y = F -1 x + R F -1 y
35 28 34 mpd F R MndHom S F : B 1-1 onto C x C y C F -1 x + S y = F -1 x + R F -1 y
36 35 ralrimivva F R MndHom S F : B 1-1 onto C x C y C F -1 x + S y = F -1 x + R F -1 y
37 eqid 0 R = 0 R
38 eqid 0 S = 0 S
39 37 38 mhm0 F R MndHom S F 0 R = 0 S
40 39 adantr F R MndHom S F : B 1-1 onto C F 0 R = 0 S
41 40 eqcomd F R MndHom S F : B 1-1 onto C 0 S = F 0 R
42 41 fveq2d F R MndHom S F : B 1-1 onto C F -1 0 S = F -1 F 0 R
43 1 37 mndidcl R Mnd 0 R B
44 4 43 syl F R MndHom S 0 R B
45 44 adantr F R MndHom S F : B 1-1 onto C 0 R B
46 f1ocnvfv1 F : B 1-1 onto C 0 R B F -1 F 0 R = 0 R
47 21 45 46 syl2anc F R MndHom S F : B 1-1 onto C F -1 F 0 R = 0 R
48 42 47 eqtrd F R MndHom S F : B 1-1 onto C F -1 0 S = 0 R
49 10 36 48 3jca F R MndHom S F : B 1-1 onto C F -1 : C B x C y C F -1 x + S y = F -1 x + R F -1 y F -1 0 S = 0 R
50 2 1 18 17 38 37 ismhm F -1 S MndHom R S Mnd R Mnd F -1 : C B x C y C F -1 x + S y = F -1 x + R F -1 y F -1 0 S = 0 R
51 6 49 50 sylanbrc F R MndHom S F : B 1-1 onto C F -1 S MndHom R
52 1 2 mhmf F R MndHom S F : B C
53 52 adantr F R MndHom S F -1 S MndHom R F : B C
54 53 ffnd F R MndHom S F -1 S MndHom R F Fn B
55 2 1 mhmf F -1 S MndHom R F -1 : C B
56 55 adantl F R MndHom S F -1 S MndHom R F -1 : C B
57 56 ffnd F R MndHom S F -1 S MndHom R F -1 Fn C
58 dff1o4 F : B 1-1 onto C F Fn B F -1 Fn C
59 54 57 58 sylanbrc F R MndHom S F -1 S MndHom R F : B 1-1 onto C
60 51 59 impbida F R MndHom S F : B 1-1 onto C F -1 S MndHom R