Metamath Proof Explorer


Theorem mhmhmeotmd

Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017)

Ref Expression
Hypotheses mhmhmeotmd.m F S MndHom T
mhmhmeotmd.h F TopOpen S Homeo TopOpen T
mhmhmeotmd.t S TopMnd
mhmhmeotmd.s T TopSp
Assertion mhmhmeotmd T TopMnd

Proof

Step Hyp Ref Expression
1 mhmhmeotmd.m F S MndHom T
2 mhmhmeotmd.h F TopOpen S Homeo TopOpen T
3 mhmhmeotmd.t S TopMnd
4 mhmhmeotmd.s T TopSp
5 mhmrcl2 F S MndHom T T Mnd
6 1 5 ax-mp T Mnd
7 mhmrcl1 F S MndHom T S Mnd
8 1 7 ax-mp S Mnd
9 eqid Base S = Base S
10 eqid + 𝑓 S = + 𝑓 S
11 9 10 mndplusf S Mnd + 𝑓 S : Base S × Base S Base S
12 8 11 ax-mp + 𝑓 S : Base S × Base S Base S
13 eqid Base T = Base T
14 eqid + 𝑓 T = + 𝑓 T
15 13 14 mndplusf T Mnd + 𝑓 T : Base T × Base T Base T
16 6 15 ax-mp + 𝑓 T : Base T × Base T Base T
17 eqid TopOpen S = TopOpen S
18 17 9 tmdtopon S TopMnd TopOpen S TopOn Base S
19 3 18 ax-mp TopOpen S TopOn Base S
20 eqid TopOpen T = TopOpen T
21 13 20 istps T TopSp TopOpen T TopOn Base T
22 4 21 mpbi TopOpen T TopOn Base T
23 eqid + S = + S
24 eqid + T = + T
25 9 23 24 mhmlin F S MndHom T x Base S y Base S F x + S y = F x + T F y
26 1 25 mp3an1 x Base S y Base S F x + S y = F x + T F y
27 9 23 10 plusfval x Base S y Base S x + 𝑓 S y = x + S y
28 27 fveq2d x Base S y Base S F x + 𝑓 S y = F x + S y
29 9 13 mhmf F S MndHom T F : Base S Base T
30 1 29 ax-mp F : Base S Base T
31 30 ffvelrni x Base S F x Base T
32 30 ffvelrni y Base S F y Base T
33 13 24 14 plusfval F x Base T F y Base T F x + 𝑓 T F y = F x + T F y
34 31 32 33 syl2an x Base S y Base S F x + 𝑓 T F y = F x + T F y
35 26 28 34 3eqtr4d x Base S y Base S F x + 𝑓 S y = F x + 𝑓 T F y
36 17 10 tmdcn S TopMnd + 𝑓 S TopOpen S × t TopOpen S Cn TopOpen S
37 3 36 ax-mp + 𝑓 S TopOpen S × t TopOpen S Cn TopOpen S
38 2 12 16 19 22 35 37 mndpluscn + 𝑓 T TopOpen T × t TopOpen T Cn TopOpen T
39 14 20 istmd T TopMnd T Mnd T TopSp + 𝑓 T TopOpen T × t TopOpen T Cn TopOpen T
40 6 4 38 39 mpbir3an T TopMnd