Metamath Proof Explorer


Theorem mhmimalem

Description: Lemma for mhmima and similar theorems, formerly part of proof for mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)

Ref Expression
Hypotheses mhmimalem.f φ F M MndHom N
mhmimalem.s φ X Base M
mhmimalem.a φ ˙ = + M
mhmimalem.p φ + ˙ = + N
mhmimalem.c φ z X x X z ˙ x X
Assertion mhmimalem φ x F X y F X x + ˙ y F X

Proof

Step Hyp Ref Expression
1 mhmimalem.f φ F M MndHom N
2 mhmimalem.s φ X Base M
3 mhmimalem.a φ ˙ = + M
4 mhmimalem.p φ + ˙ = + N
5 mhmimalem.c φ z X x X z ˙ x X
6 1 adantr φ z X x X F M MndHom N
7 2 adantr φ z X x X X Base M
8 simprl φ z X x X z X
9 7 8 sseldd φ z X x X z Base M
10 simprr φ z X x X x X
11 7 10 sseldd φ z X x X x Base M
12 eqid Base M = Base M
13 eqid + M = + M
14 eqid + N = + N
15 12 13 14 mhmlin F M MndHom N z Base M x Base M F z + M x = F z + N F x
16 6 9 11 15 syl3anc φ z X x X F z + M x = F z + N F x
17 3 oveqd φ z ˙ x = z + M x
18 17 fveq2d φ F z ˙ x = F z + M x
19 4 oveqd φ F z + ˙ F x = F z + N F x
20 18 19 eqeq12d φ F z ˙ x = F z + ˙ F x F z + M x = F z + N F x
21 20 adantr φ z X x X F z ˙ x = F z + ˙ F x F z + M x = F z + N F x
22 16 21 mpbird φ z X x X F z ˙ x = F z + ˙ F x
23 eqid Base N = Base N
24 12 23 mhmf F M MndHom N F : Base M Base N
25 1 24 syl φ F : Base M Base N
26 25 ffnd φ F Fn Base M
27 26 adantr φ z X x X F Fn Base M
28 5 3expb φ z X x X z ˙ x X
29 fnfvima F Fn Base M X Base M z ˙ x X F z ˙ x F X
30 27 7 28 29 syl3anc φ z X x X F z ˙ x F X
31 22 30 eqeltrrd φ z X x X F z + ˙ F x F X
32 31 anassrs φ z X x X F z + ˙ F x F X
33 32 ralrimiva φ z X x X F z + ˙ F x F X
34 oveq2 y = F x F z + ˙ y = F z + ˙ F x
35 34 eleq1d y = F x F z + ˙ y F X F z + ˙ F x F X
36 35 ralima F Fn Base M X Base M y F X F z + ˙ y F X x X F z + ˙ F x F X
37 26 2 36 syl2anc φ y F X F z + ˙ y F X x X F z + ˙ F x F X
38 37 adantr φ z X y F X F z + ˙ y F X x X F z + ˙ F x F X
39 33 38 mpbird φ z X y F X F z + ˙ y F X
40 39 ralrimiva φ z X y F X F z + ˙ y F X
41 oveq1 x = F z x + ˙ y = F z + ˙ y
42 41 eleq1d x = F z x + ˙ y F X F z + ˙ y F X
43 42 ralbidv x = F z y F X x + ˙ y F X y F X F z + ˙ y F X
44 43 ralima F Fn Base M X Base M x F X y F X x + ˙ y F X z X y F X F z + ˙ y F X
45 26 2 44 syl2anc φ x F X y F X x + ˙ y F X z X y F X F z + ˙ y F X
46 40 45 mpbird φ x F X y F X x + ˙ y F X