Description: Lemma for mhmima and similar theorems, formerly part of proof for mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmimalem.f | |
|
| mhmimalem.s | |
||
| mhmimalem.a | |
||
| mhmimalem.p | |
||
| mhmimalem.c | |
||
| Assertion | mhmimalem | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmimalem.f | |
|
| 2 | mhmimalem.s | |
|
| 3 | mhmimalem.a | |
|
| 4 | mhmimalem.p | |
|
| 5 | mhmimalem.c | |
|
| 6 | 1 | adantr | |
| 7 | 2 | adantr | |
| 8 | simprl | |
|
| 9 | 7 8 | sseldd | |
| 10 | simprr | |
|
| 11 | 7 10 | sseldd | |
| 12 | eqid | |
|
| 13 | eqid | |
|
| 14 | eqid | |
|
| 15 | 12 13 14 | mhmlin | |
| 16 | 6 9 11 15 | syl3anc | |
| 17 | 3 | oveqd | |
| 18 | 17 | fveq2d | |
| 19 | 4 | oveqd | |
| 20 | 18 19 | eqeq12d | |
| 21 | 20 | adantr | |
| 22 | 16 21 | mpbird | |
| 23 | eqid | |
|
| 24 | 12 23 | mhmf | |
| 25 | 1 24 | syl | |
| 26 | 25 | ffnd | |
| 27 | 26 | adantr | |
| 28 | 5 | 3expb | |
| 29 | fnfvima | |
|
| 30 | 27 7 28 29 | syl3anc | |
| 31 | 22 30 | eqeltrrd | |
| 32 | 31 | anassrs | |
| 33 | 32 | ralrimiva | |
| 34 | oveq2 | |
|
| 35 | 34 | eleq1d | |
| 36 | 35 | ralima | |
| 37 | 26 2 36 | syl2anc | |
| 38 | 37 | adantr | |
| 39 | 33 38 | mpbird | |
| 40 | 39 | ralrimiva | |
| 41 | oveq1 | |
|
| 42 | 41 | eleq1d | |
| 43 | 42 | ralbidv | |
| 44 | 43 | ralima | |
| 45 | 26 2 44 | syl2anc | |
| 46 | 40 45 | mpbird | |