Metamath Proof Explorer


Theorem mhmimasplusg

Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses mhmimasplusg.w W = F 𝑠 V
mhmimasplusg.b B = Base V
mhmimasplusg.c C = Base W
mhmimasplusg.x φ X B
mhmimasplusg.y φ Y B
mhmimasplusg.1 φ F : B onto C
mhmimasplusg.f φ F V MndHom W
mhmimasplusg.2 + ˙ = + V
mhmimasplusg.3 ˙ = + W
Assertion mhmimasplusg φ F X ˙ F Y = F X + ˙ Y

Proof

Step Hyp Ref Expression
1 mhmimasplusg.w W = F 𝑠 V
2 mhmimasplusg.b B = Base V
3 mhmimasplusg.c C = Base W
4 mhmimasplusg.x φ X B
5 mhmimasplusg.y φ Y B
6 mhmimasplusg.1 φ F : B onto C
7 mhmimasplusg.f φ F V MndHom W
8 mhmimasplusg.2 + ˙ = + V
9 mhmimasplusg.3 ˙ = + W
10 simprl φ a B b B p B q B F a = F p F b = F q F a = F p
11 simprr φ a B b B p B q B F a = F p F b = F q F b = F q
12 10 11 oveq12d φ a B b B p B q B F a = F p F b = F q F a ˙ F b = F p ˙ F q
13 7 3ad2ant1 φ a B b B p B q B F V MndHom W
14 13 adantr φ a B b B p B q B F a = F p F b = F q F V MndHom W
15 simpl2l φ a B b B p B q B F a = F p F b = F q a B
16 simpl2r φ a B b B p B q B F a = F p F b = F q b B
17 2 8 9 mhmlin F V MndHom W a B b B F a + ˙ b = F a ˙ F b
18 14 15 16 17 syl3anc φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F a ˙ F b
19 simpl3l φ a B b B p B q B F a = F p F b = F q p B
20 simpl3r φ a B b B p B q B F a = F p F b = F q q B
21 2 8 9 mhmlin F V MndHom W p B q B F p + ˙ q = F p ˙ F q
22 14 19 20 21 syl3anc φ a B b B p B q B F a = F p F b = F q F p + ˙ q = F p ˙ F q
23 12 18 22 3eqtr4d φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
24 23 ex φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
25 1 a1i φ W = F 𝑠 V
26 2 a1i φ B = Base V
27 mhmrcl1 F V MndHom W V Mnd
28 7 27 syl φ V Mnd
29 6 24 25 26 28 8 9 imasaddval φ X B Y B F X ˙ F Y = F X + ˙ Y
30 4 5 29 mpd3an23 φ F X ˙ F Y = F X + ˙ Y