Step |
Hyp |
Ref |
Expression |
1 |
|
mhmpropd.a |
|
2 |
|
mhmpropd.b |
|
3 |
|
mhmpropd.c |
|
4 |
|
mhmpropd.d |
|
5 |
|
mhmpropd.e |
|
6 |
|
mhmpropd.f |
|
7 |
5
|
fveq2d |
|
8 |
7
|
adantlr |
|
9 |
|
ffvelrn |
|
10 |
|
ffvelrn |
|
11 |
9 10
|
anim12dan |
|
12 |
6
|
ralrimivva |
|
13 |
|
oveq1 |
|
14 |
|
oveq1 |
|
15 |
13 14
|
eqeq12d |
|
16 |
|
oveq2 |
|
17 |
|
oveq2 |
|
18 |
16 17
|
eqeq12d |
|
19 |
15 18
|
cbvral2vw |
|
20 |
12 19
|
sylib |
|
21 |
|
oveq1 |
|
22 |
|
oveq1 |
|
23 |
21 22
|
eqeq12d |
|
24 |
|
oveq2 |
|
25 |
|
oveq2 |
|
26 |
24 25
|
eqeq12d |
|
27 |
23 26
|
rspc2va |
|
28 |
11 20 27
|
syl2anr |
|
29 |
28
|
anassrs |
|
30 |
8 29
|
eqeq12d |
|
31 |
30
|
2ralbidva |
|
32 |
31
|
adantrl |
|
33 |
|
raleq |
|
34 |
33
|
raleqbi1dv |
|
35 |
1 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
|
raleq |
|
38 |
37
|
raleqbi1dv |
|
39 |
3 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
32 36 40
|
3bitr3d |
|
42 |
1
|
adantr |
|
43 |
3
|
adantr |
|
44 |
5
|
adantlr |
|
45 |
42 43 44
|
grpidpropd |
|
46 |
45
|
fveq2d |
|
47 |
2
|
adantr |
|
48 |
4
|
adantr |
|
49 |
6
|
adantlr |
|
50 |
47 48 49
|
grpidpropd |
|
51 |
46 50
|
eqeq12d |
|
52 |
41 51
|
anbi12d |
|
53 |
52
|
anassrs |
|
54 |
53
|
pm5.32da |
|
55 |
1 2
|
feq23d |
|
56 |
55
|
adantr |
|
57 |
56
|
anbi1d |
|
58 |
3 4
|
feq23d |
|
59 |
58
|
adantr |
|
60 |
59
|
anbi1d |
|
61 |
54 57 60
|
3bitr3d |
|
62 |
|
3anass |
|
63 |
|
3anass |
|
64 |
61 62 63
|
3bitr4g |
|
65 |
64
|
pm5.32da |
|
66 |
1 3 5
|
mndpropd |
|
67 |
2 4 6
|
mndpropd |
|
68 |
66 67
|
anbi12d |
|
69 |
68
|
anbi1d |
|
70 |
65 69
|
bitrd |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
|
eqid |
|
76 |
|
eqid |
|
77 |
71 72 73 74 75 76
|
ismhm |
|
78 |
|
eqid |
|
79 |
|
eqid |
|
80 |
|
eqid |
|
81 |
|
eqid |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
78 79 80 81 82 83
|
ismhm |
|
85 |
70 77 84
|
3bitr4g |
|
86 |
85
|
eqrdv |
|