Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
mhmrcl1
Next ⟩
mhmrcl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mhmrcl1
Description:
Reverse closure of a monoid homomorphism.
(Contributed by
Mario Carneiro
, 7-Mar-2015)
Ref
Expression
Assertion
mhmrcl1
⊢
F
∈
S
MndHom
T
→
S
∈
Mnd
Proof
Step
Hyp
Ref
Expression
1
df-mhm
⊢
MndHom
=
s
∈
Mnd
,
t
∈
Mnd
⟼
f
∈
Base
t
Base
s
|
∀
x
∈
Base
s
∀
y
∈
Base
s
f
⁡
x
+
s
y
=
f
⁡
x
+
t
f
⁡
y
∧
f
⁡
0
s
=
0
t
2
1
elmpocl1
⊢
F
∈
S
MndHom
T
→
S
∈
Mnd