Metamath Proof Explorer


Theorem mhmrcl1

Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Assertion mhmrcl1 F S MndHom T S Mnd

Proof

Step Hyp Ref Expression
1 df-mhm MndHom = s Mnd , t Mnd f Base t Base s | x Base s y Base s f x + s y = f x + t f y f 0 s = 0 t
2 1 elmpocl1 F S MndHom T S Mnd