Metamath Proof Explorer


Theorem mhmrcl2

Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Assertion mhmrcl2 F S MndHom T T Mnd

Proof

Step Hyp Ref Expression
1 df-mhm MndHom = s Mnd , t Mnd f Base t Base s | x Base s y Base s f x + s y = f x + t f y f 0 s = 0 t
2 1 elmpocl2 F S MndHom T T Mnd