Metamath Proof Explorer


Theorem mhpaddcl

Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023) Remove sethood hypothesis. (Revised by SN, 18-May-2025)

Ref Expression
Hypotheses mhpaddcl.h H = I mHomP R
mhpaddcl.p P = I mPoly R
mhpaddcl.a + ˙ = + P
mhpaddcl.r φ R Grp
mhpaddcl.n φ N 0
mhpaddcl.x φ X H N
mhpaddcl.y φ Y H N
Assertion mhpaddcl φ X + ˙ Y H N

Proof

Step Hyp Ref Expression
1 mhpaddcl.h H = I mHomP R
2 mhpaddcl.p P = I mPoly R
3 mhpaddcl.a + ˙ = + P
4 mhpaddcl.r φ R Grp
5 mhpaddcl.n φ N 0
6 mhpaddcl.x φ X H N
7 mhpaddcl.y φ Y H N
8 eqid Base P = Base P
9 eqid 0 R = 0 R
10 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
11 reldmmhp Rel dom mHomP
12 11 1 6 elfvov1 φ I V
13 2 mplgrp I V R Grp P Grp
14 12 4 13 syl2anc φ P Grp
15 1 2 8 12 4 5 6 mhpmpl φ X Base P
16 1 2 8 12 4 5 7 mhpmpl φ Y Base P
17 8 3 grpcl P Grp X Base P Y Base P X + ˙ Y Base P
18 14 15 16 17 syl3anc φ X + ˙ Y Base P
19 eqid + R = + R
20 2 8 19 3 15 16 mpladd φ X + ˙ Y = X + R f Y
21 20 oveq1d φ X + ˙ Y supp 0 R = X + R f Y supp 0 R
22 ovexd φ 0 I V
23 10 22 rabexd φ h 0 I | h -1 Fin V
24 eqid Base R = Base R
25 24 9 grpidcl R Grp 0 R Base R
26 4 25 syl φ 0 R Base R
27 2 24 8 10 15 mplelf φ X : h 0 I | h -1 Fin Base R
28 2 24 8 10 16 mplelf φ Y : h 0 I | h -1 Fin Base R
29 24 19 9 grplid R Grp 0 R Base R 0 R + R 0 R = 0 R
30 4 26 29 syl2anc φ 0 R + R 0 R = 0 R
31 23 26 27 28 30 suppofssd φ X + R f Y supp 0 R supp 0 R X supp 0 R Y
32 21 31 eqsstrd φ X + ˙ Y supp 0 R supp 0 R X supp 0 R Y
33 1 9 10 12 4 5 6 mhpdeg φ X supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
34 1 9 10 12 4 5 7 mhpdeg φ Y supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
35 33 34 unssd φ supp 0 R X supp 0 R Y g h 0 I | h -1 Fin | fld 𝑠 0 g = N
36 32 35 sstrd φ X + ˙ Y supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
37 1 2 8 9 10 12 4 5 18 36 ismhp2 φ X + ˙ Y H N