Metamath Proof Explorer


Theorem mhphf

Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the ( QX ) which corresponds to X ). (Contributed by SN, 28-Jul-2024) (Proof shortened by SN, 8-Mar-2025)

Ref Expression
Hypotheses mhphf.q Q = I evalSub S R
mhphf.h H = I mHomP U
mhphf.u U = S 𝑠 R
mhphf.k K = Base S
mhphf.m · ˙ = S
mhphf.e × ˙ = mulGrp S
mhphf.i φ I V
mhphf.s φ S CRing
mhphf.r φ R SubRing S
mhphf.l φ L R
mhphf.n φ N 0
mhphf.x φ X H N
mhphf.a φ A K I
Assertion mhphf φ Q X I × L · ˙ f A = N × ˙ L · ˙ Q X A

Proof

Step Hyp Ref Expression
1 mhphf.q Q = I evalSub S R
2 mhphf.h H = I mHomP U
3 mhphf.u U = S 𝑠 R
4 mhphf.k K = Base S
5 mhphf.m · ˙ = S
6 mhphf.e × ˙ = mulGrp S
7 mhphf.i φ I V
8 mhphf.s φ S CRing
9 mhphf.r φ R SubRing S
10 mhphf.l φ L R
11 mhphf.n φ N 0
12 mhphf.x φ X H N
13 mhphf.a φ A K I
14 7 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N I V
15 10 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N L R
16 elmapi A K I A : I K
17 13 16 syl φ A : I K
18 17 ffnd φ A Fn I
19 18 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N A Fn I
20 eqidd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I A i = A i
21 14 15 19 20 ofc1 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I I × L · ˙ f A i = L · ˙ A i
22 21 oveq2d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ I × L · ˙ f A i = b i × ˙ L · ˙ A i
23 eqid mulGrp S = mulGrp S
24 23 crngmgp S CRing mulGrp S CMnd
25 8 24 syl φ mulGrp S CMnd
26 25 ad2antrr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I mulGrp S CMnd
27 elrabi b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b h 0 I | h -1 Fin
28 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
29 28 psrbagf b h 0 I | h -1 Fin b : I 0
30 27 29 syl b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b : I 0
31 30 adantl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b : I 0
32 31 ffvelcdmda φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i 0
33 4 subrgss R SubRing S R K
34 9 33 syl φ R K
35 34 10 sseldd φ L K
36 35 ad2antrr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I L K
37 17 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N A : I K
38 37 ffvelcdmda φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I A i K
39 23 4 mgpbas K = Base mulGrp S
40 23 5 mgpplusg · ˙ = + mulGrp S
41 39 6 40 mulgnn0di mulGrp S CMnd b i 0 L K A i K b i × ˙ L · ˙ A i = b i × ˙ L · ˙ b i × ˙ A i
42 26 32 36 38 41 syl13anc φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L · ˙ A i = b i × ˙ L · ˙ b i × ˙ A i
43 22 42 eqtrd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ I × L · ˙ f A i = b i × ˙ L · ˙ b i × ˙ A i
44 43 mpteq2dva φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ I × L · ˙ f A i = i I b i × ˙ L · ˙ b i × ˙ A i
45 44 oveq2d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ I × L · ˙ f A i = mulGrp S i I b i × ˙ L · ˙ b i × ˙ A i
46 eqid 1 S = 1 S
47 23 46 ringidval 1 S = 0 mulGrp S
48 8 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N S CRing
49 48 24 syl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S CMnd
50 8 crngringd φ S Ring
51 23 ringmgp S Ring mulGrp S Mnd
52 50 51 syl φ mulGrp S Mnd
53 52 ad2antrr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I mulGrp S Mnd
54 39 6 53 32 36 mulgnn0cld φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L K
55 39 6 53 32 38 mulgnn0cld φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i K
56 eqidd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L = i I b i × ˙ L
57 eqidd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i = i I b i × ˙ A i
58 7 mptexd φ i I b i × ˙ L V
59 58 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L V
60 fvexd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N 1 S V
61 funmpt Fun i I b i × ˙ L
62 61 a1i φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N Fun i I b i × ˙ L
63 28 psrbagfsupp b h 0 I | h -1 Fin finSupp 0 b
64 27 63 syl b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 0 b
65 64 adantl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 0 b
66 31 feqmptd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b = i I b i
67 66 oveq1d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b supp 0 = i I b i supp 0
68 67 eqimsscd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i supp 0 b supp 0
69 39 47 6 mulg0 k K 0 × ˙ k = 1 S
70 69 adantl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N k K 0 × ˙ k = 1 S
71 0zd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N 0
72 68 70 32 36 71 suppssov1 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L supp 1 S b supp 0
73 59 60 62 65 72 fsuppsssuppgd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 1 S i I b i × ˙ L
74 7 mptexd φ i I b i × ˙ A i V
75 74 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i V
76 funmpt Fun i I b i × ˙ A i
77 76 a1i φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N Fun i I b i × ˙ A i
78 68 70 32 38 71 suppssov1 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i supp 1 S b supp 0
79 75 60 77 65 78 fsuppsssuppgd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 1 S i I b i × ˙ A i
80 39 47 40 49 14 54 55 56 57 73 79 gsummptfsadd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ L · ˙ b i × ˙ A i = mulGrp S i I b i × ˙ L · ˙ mulGrp S i I b i × ˙ A i
81 eqid g h 0 I | h -1 Fin | fld 𝑠 0 g = N = g h 0 I | h -1 Fin | fld 𝑠 0 g = N
82 28 81 39 6 7 52 35 11 mhphflem φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ L = N × ˙ L
83 82 oveq1d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ L · ˙ mulGrp S i I b i × ˙ A i = N × ˙ L · ˙ mulGrp S i I b i × ˙ A i
84 45 80 83 3eqtrd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ I × L · ˙ f A i = N × ˙ L · ˙ mulGrp S i I b i × ˙ A i
85 84 oveq2d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = X b · ˙ N × ˙ L · ˙ mulGrp S i I b i × ˙ A i
86 eqid I mPoly U = I mPoly U
87 eqid Base U = Base U
88 eqid Base I mPoly U = Base I mPoly U
89 3 ovexi U V
90 89 a1i φ U V
91 2 86 88 7 90 11 12 mhpmpl φ X Base I mPoly U
92 86 87 88 28 91 mplelf φ X : h 0 I | h -1 Fin Base U
93 3 subrgbas R SubRing S R = Base U
94 93 33 eqsstrrd R SubRing S Base U K
95 9 94 syl φ Base U K
96 92 95 fssd φ X : h 0 I | h -1 Fin K
97 96 ffvelcdmda φ b h 0 I | h -1 Fin X b K
98 27 97 sylan2 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b K
99 39 6 52 11 35 mulgnn0cld φ N × ˙ L K
100 99 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L K
101 7 adantr φ b h 0 I | h -1 Fin I V
102 8 adantr φ b h 0 I | h -1 Fin S CRing
103 13 adantr φ b h 0 I | h -1 Fin A K I
104 simpr φ b h 0 I | h -1 Fin b h 0 I | h -1 Fin
105 28 4 23 6 101 102 103 104 evlsvvvallem φ b h 0 I | h -1 Fin mulGrp S i I b i × ˙ A i K
106 27 105 sylan2 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ A i K
107 4 5 48 98 100 106 crng12d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ N × ˙ L · ˙ mulGrp S i I b i × ˙ A i = N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
108 85 107 eqtrd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
109 108 mpteq2dva φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
110 109 oveq2d φ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
111 eqid 0 S = 0 S
112 ovex 0 I V
113 112 rabex h 0 I | h -1 Fin V
114 113 rabex g h 0 I | h -1 Fin | fld 𝑠 0 g = N V
115 114 a1i φ g h 0 I | h -1 Fin | fld 𝑠 0 g = N V
116 50 adantr φ b h 0 I | h -1 Fin S Ring
117 4 5 116 97 105 ringcld φ b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i K
118 27 117 sylan2 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i K
119 ssrab2 g h 0 I | h -1 Fin | fld 𝑠 0 g = N h 0 I | h -1 Fin
120 mptss g h 0 I | h -1 Fin | fld 𝑠 0 g = N h 0 I | h -1 Fin b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i
121 119 120 mp1i φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i
122 28 86 3 88 4 23 6 5 7 8 9 91 13 evlsvvvallem2 φ finSupp 0 S b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i
123 121 122 fsuppss φ finSupp 0 S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
124 4 111 5 50 115 99 118 123 gsummulc2 φ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i = N × ˙ L · ˙ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
125 110 124 eqtrd φ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = N × ˙ L · ˙ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
126 4 fvexi K V
127 126 a1i φ K V
128 4 5 ringcl S Ring j K k K j · ˙ k K
129 50 128 syl3an1 φ j K k K j · ˙ k K
130 129 3expb φ j K k K j · ˙ k K
131 fconst6g L K I × L : I K
132 35 131 syl φ I × L : I K
133 inidm I I = I
134 130 132 17 7 7 133 off φ I × L · ˙ f A : I K
135 127 7 134 elmapdd φ I × L · ˙ f A K I
136 1 2 3 28 81 4 23 6 5 7 8 9 11 12 135 evlsmhpvvval φ Q X I × L · ˙ f A = S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i
137 1 2 3 28 81 4 23 6 5 7 8 9 11 12 13 evlsmhpvvval φ Q X A = S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
138 137 oveq2d φ N × ˙ L · ˙ Q X A = N × ˙ L · ˙ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
139 125 136 138 3eqtr4d φ Q X I × L · ˙ f A = N × ˙ L · ˙ Q X A