Metamath Proof Explorer


Theorem mhpinvcl

Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023) Remove sethood hypothesis. (Revised by SN, 18-May-2025)

Ref Expression
Hypotheses mhpinvcl.h H = I mHomP R
mhpinvcl.p P = I mPoly R
mhpinvcl.m M = inv g P
mhpinvcl.r φ R Grp
mhpinvcl.n φ N 0
mhpinvcl.x φ X H N
Assertion mhpinvcl φ M X H N

Proof

Step Hyp Ref Expression
1 mhpinvcl.h H = I mHomP R
2 mhpinvcl.p P = I mPoly R
3 mhpinvcl.m M = inv g P
4 mhpinvcl.r φ R Grp
5 mhpinvcl.n φ N 0
6 mhpinvcl.x φ X H N
7 eqid Base P = Base P
8 eqid 0 R = 0 R
9 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
10 reldmmhp Rel dom mHomP
11 10 1 6 elfvov1 φ I V
12 2 mplgrp I V R Grp P Grp
13 11 4 12 syl2anc φ P Grp
14 1 2 7 11 4 5 6 mhpmpl φ X Base P
15 7 3 grpinvcl P Grp X Base P M X Base P
16 13 14 15 syl2anc φ M X Base P
17 eqid inv g R = inv g R
18 2 7 17 3 11 4 14 mplneg φ M X = inv g R X
19 18 oveq1d φ M X supp 0 R = inv g R X supp 0 R
20 eqid Base R = Base R
21 20 17 grpinvfn inv g R Fn Base R
22 21 a1i φ inv g R Fn Base R
23 2 20 7 9 14 mplelf φ X : h 0 I | h -1 Fin Base R
24 ovex 0 I V
25 24 rabex h 0 I | h -1 Fin V
26 25 a1i φ h 0 I | h -1 Fin V
27 fvexd φ 0 R V
28 8 17 grpinvid R Grp inv g R 0 R = 0 R
29 4 28 syl φ inv g R 0 R = 0 R
30 22 23 26 27 29 suppcoss φ inv g R X supp 0 R X supp 0 R
31 19 30 eqsstrd φ M X supp 0 R X supp 0 R
32 1 8 9 11 4 5 6 mhpdeg φ X supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
33 31 32 sstrd φ M X supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
34 1 2 7 8 9 11 4 5 16 33 ismhp2 φ M X H N