Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h H = I mHomP R
mhplss.p P = I mPoly R
mhplss.i φ I V
mhplss.r φ R Ring
mhplss.n φ N 0
Assertion mhplss φ H N LSubSp P

Proof

Step Hyp Ref Expression
1 mhplss.h H = I mHomP R
2 mhplss.p P = I mPoly R
3 mhplss.i φ I V
4 mhplss.r φ R Ring
5 mhplss.n φ N 0
6 4 ringgrpd φ R Grp
7 1 2 3 6 5 mhpsubg φ H N SubGrp P
8 eqid P = P
9 eqid Base R = Base R
10 4 adantr φ a Base Scalar P b H N R Ring
11 5 adantr φ a Base Scalar P b H N N 0
12 2 3 4 mplsca φ R = Scalar P
13 12 fveq2d φ Base R = Base Scalar P
14 13 eqimsscd φ Base Scalar P Base R
15 14 sselda φ a Base Scalar P a Base R
16 15 adantrr φ a Base Scalar P b H N a Base R
17 simprr φ a Base Scalar P b H N b H N
18 1 2 8 9 10 11 16 17 mhpvscacl φ a Base Scalar P b H N a P b H N
19 18 ralrimivva φ a Base Scalar P b H N a P b H N
20 2 mpllmod I V R Ring P LMod
21 3 4 20 syl2anc φ P LMod
22 eqid Scalar P = Scalar P
23 eqid Base Scalar P = Base Scalar P
24 eqid Base P = Base P
25 eqid LSubSp P = LSubSp P
26 22 23 24 8 25 islss4 P LMod H N LSubSp P H N SubGrp P a Base Scalar P b H N a P b H N
27 21 26 syl φ H N LSubSp P H N SubGrp P a Base Scalar P b H N a P b H N
28 7 19 27 mpbir2and φ H N LSubSp P