Metamath Proof Explorer


Theorem mhpmulcl

Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024) Remove sethood hypothesis. (Revised by SN, 18-May-2025)

Ref Expression
Hypotheses mhpmulcl.h H = I mHomP R
mhpmulcl.y Y = I mPoly R
mhpmulcl.t · ˙ = Y
mhpmulcl.r φ R Ring
mhpmulcl.m φ M 0
mhpmulcl.n φ N 0
mhpmulcl.p φ P H M
mhpmulcl.q φ Q H N
Assertion mhpmulcl φ P · ˙ Q H M + N

Proof

Step Hyp Ref Expression
1 mhpmulcl.h H = I mHomP R
2 mhpmulcl.y Y = I mPoly R
3 mhpmulcl.t · ˙ = Y
4 mhpmulcl.r φ R Ring
5 mhpmulcl.m φ M 0
6 mhpmulcl.n φ N 0
7 mhpmulcl.p φ P H M
8 mhpmulcl.q φ Q H N
9 eqid Base Y = Base Y
10 eqid R = R
11 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
12 reldmmhp Rel dom mHomP
13 12 1 7 elfvov1 φ I V
14 1 2 9 13 4 5 7 mhpmpl φ P Base Y
15 1 2 9 13 4 6 8 mhpmpl φ Q Base Y
16 2 9 10 3 11 14 15 mplmul φ P · ˙ Q = d h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f d P e R Q d f e
17 16 adantr φ x h 0 I | h -1 Fin P · ˙ Q = d h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f d P e R Q d f e
18 breq2 d = x c f d c f x
19 18 rabbidv d = x c h 0 I | h -1 Fin | c f d = c h 0 I | h -1 Fin | c f x
20 fvoveq1 d = x Q d f e = Q x f e
21 20 oveq2d d = x P e R Q d f e = P e R Q x f e
22 19 21 mpteq12dv d = x e c h 0 I | h -1 Fin | c f d P e R Q d f e = e c h 0 I | h -1 Fin | c f x P e R Q x f e
23 22 oveq2d d = x R e c h 0 I | h -1 Fin | c f d P e R Q d f e = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
24 23 adantl φ x h 0 I | h -1 Fin d = x R e c h 0 I | h -1 Fin | c f d P e R Q d f e = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
25 simpr φ x h 0 I | h -1 Fin x h 0 I | h -1 Fin
26 ovexd φ x h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f x P e R Q x f e V
27 17 24 25 26 fvmptd φ x h 0 I | h -1 Fin P · ˙ Q x = R e c h 0 I | h -1 Fin | c f x P e R Q x f e
28 27 neeq1d φ x h 0 I | h -1 Fin P · ˙ Q x 0 R R e c h 0 I | h -1 Fin | c f x P e R Q x f e 0 R
29 simp-4l φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M φ
30 oveq2 c = e fld 𝑠 0 c = fld 𝑠 0 e
31 30 eqeq1d c = e fld 𝑠 0 c = M fld 𝑠 0 e = M
32 31 necon3bbid c = e ¬ fld 𝑠 0 c = M fld 𝑠 0 e M
33 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e c h 0 I | h -1 Fin | c f x
34 elrabi e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin
35 33 34 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e h 0 I | h -1 Fin
36 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M fld 𝑠 0 e M
37 32 35 36 elrabd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = M
38 notrab h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M = c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = M
39 37 38 eleqtrrdi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M
40 eqid Base R = Base R
41 2 40 9 11 14 mplelf φ P : h 0 I | h -1 Fin Base R
42 eqid 0 R = 0 R
43 1 42 11 13 4 5 7 mhpdeg φ P supp 0 R c h 0 I | h -1 Fin | fld 𝑠 0 c = M
44 ovex 0 I V
45 44 rabex h 0 I | h -1 Fin V
46 45 a1i φ h 0 I | h -1 Fin V
47 fvexd φ 0 R V
48 41 43 46 47 suppssr φ e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = M P e = 0 R
49 29 39 48 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e = 0 R
50 49 oveq1d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e R Q x f e = 0 R R Q x f e
51 4 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M R Ring
52 15 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q Base Y
53 2 40 9 11 52 mplelf φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q : h 0 I | h -1 Fin Base R
54 simp-4r φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x h 0 I | h -1 Fin
55 eqid c h 0 I | h -1 Fin | c f x = c h 0 I | h -1 Fin | c f x
56 11 55 psrbagconcl x h 0 I | h -1 Fin e c h 0 I | h -1 Fin | c f x x f e c h 0 I | h -1 Fin | c f x
57 54 33 56 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x f e c h 0 I | h -1 Fin | c f x
58 elrabi x f e c h 0 I | h -1 Fin | c f x x f e h 0 I | h -1 Fin
59 57 58 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M x f e h 0 I | h -1 Fin
60 53 59 ffvelcdmd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M Q x f e Base R
61 40 10 42 ringlz R Ring Q x f e Base R 0 R R Q x f e = 0 R
62 51 60 61 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M 0 R R Q x f e = 0 R
63 50 62 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M P e R Q x f e = 0 R
64 simp-4l φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N φ
65 oveq2 c = x f e fld 𝑠 0 c = fld 𝑠 0 x f e
66 65 eqeq1d c = x f e fld 𝑠 0 c = N fld 𝑠 0 x f e = N
67 66 necon3bbid c = x f e ¬ fld 𝑠 0 c = N fld 𝑠 0 x f e N
68 simp-4r φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x h 0 I | h -1 Fin
69 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N e c h 0 I | h -1 Fin | c f x
70 68 69 56 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e c h 0 I | h -1 Fin | c f x
71 70 58 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e h 0 I | h -1 Fin
72 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N fld 𝑠 0 x f e N
73 67 71 72 elrabd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = N
74 notrab h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N = c h 0 I | h -1 Fin | ¬ fld 𝑠 0 c = N
75 73 74 eleqtrrdi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N x f e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N
76 2 40 9 11 15 mplelf φ Q : h 0 I | h -1 Fin Base R
77 1 42 11 13 4 6 8 mhpdeg φ Q supp 0 R c h 0 I | h -1 Fin | fld 𝑠 0 c = N
78 76 77 46 47 suppssr φ x f e h 0 I | h -1 Fin c h 0 I | h -1 Fin | fld 𝑠 0 c = N Q x f e = 0 R
79 64 75 78 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N Q x f e = 0 R
80 79 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R Q x f e = P e R 0 R
81 4 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N R Ring
82 14 ad4antr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P Base Y
83 2 40 9 11 82 mplelf φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P : h 0 I | h -1 Fin Base R
84 34 adantl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin
85 84 adantr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N e h 0 I | h -1 Fin
86 83 85 ffvelcdmd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e Base R
87 40 10 42 ringrz R Ring P e Base R P e R 0 R = 0 R
88 81 86 87 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R 0 R = 0 R
89 80 88 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x f e N P e R Q x f e = 0 R
90 nn0subm 0 SubMnd fld
91 eqid fld 𝑠 0 = fld 𝑠 0
92 91 submbas 0 SubMnd fld 0 = Base fld 𝑠 0
93 90 92 ax-mp 0 = Base fld 𝑠 0
94 cnfld0 0 = 0 fld
95 91 94 subm0 0 SubMnd fld 0 = 0 fld 𝑠 0
96 90 95 ax-mp 0 = 0 fld 𝑠 0
97 nn0ex 0 V
98 cnfldadd + = + fld
99 91 98 ressplusg 0 V + = + fld 𝑠 0
100 97 99 ax-mp + = + fld 𝑠 0
101 cnring fld Ring
102 ringcmn fld Ring fld CMnd
103 101 102 ax-mp fld CMnd
104 91 submcmn fld CMnd 0 SubMnd fld fld 𝑠 0 CMnd
105 103 90 104 mp2an fld 𝑠 0 CMnd
106 105 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 CMnd
107 13 ad3antrrr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x I V
108 11 psrbagf e h 0 I | h -1 Fin e : I 0
109 84 108 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e : I 0
110 simpllr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x h 0 I | h -1 Fin
111 11 psrbagf x h 0 I | h -1 Fin x : I 0
112 110 111 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x : I 0
113 112 ffnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x Fn I
114 109 ffnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e Fn I
115 inidm I I = I
116 eqidd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i = x i
117 eqidd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i = e i
118 113 114 107 107 115 116 117 offval φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e = i I x i e i
119 simpl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x
120 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e c h 0 I | h -1 Fin | c f x
121 breq1 c = e c f x e f x
122 121 elrab e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin e f x
123 122 simprbi e c h 0 I | h -1 Fin | c f x e f x
124 120 123 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e f x
125 simpr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I i I
126 114 113 107 107 115 117 116 ofrval φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e f x i I e i x i
127 119 124 125 126 syl3anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i x i
128 109 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i 0
129 112 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i 0
130 nn0sub e i 0 x i 0 e i x i x i e i 0
131 128 129 130 syl2anc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I e i x i x i e i 0
132 127 131 mpbid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x i I x i e i 0
133 118 132 fmpt3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e : I 0
134 109 ffund φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x Fun e
135 c0ex 0 V
136 107 135 jctir φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x I V 0 V
137 fsuppeq I V 0 V e : I 0 e supp 0 = e -1 0 0
138 136 109 137 sylc φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 = e -1 0 0
139 dfn2 = 0 0
140 139 imaeq2i e -1 = e -1 0 0
141 138 140 eqtr4di φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 = e -1
142 11 psrbag I V e h 0 I | h -1 Fin e : I 0 e -1 Fin
143 107 142 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e h 0 I | h -1 Fin e : I 0 e -1 Fin
144 84 143 mpbid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e : I 0 e -1 Fin
145 144 simprd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e -1 Fin
146 141 145 eqeltrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e supp 0 Fin
147 84 elexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e V
148 isfsupp e V 0 V finSupp 0 e Fun e e supp 0 Fin
149 147 135 148 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 e Fun e e supp 0 Fin
150 134 146 149 mpbir2and φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 e
151 113 114 107 107 offun φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x Fun x f e
152 11 psrbagfsupp x h 0 I | h -1 Fin finSupp 0 x
153 110 152 syl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x
154 153 150 fsuppunfi φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x supp 0 x supp 0 e Fin
155 0nn0 0 0
156 155 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x 0 0
157 0m0e0 0 0 = 0
158 157 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x 0 0 = 0
159 107 156 112 109 158 suppofssd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e supp 0 supp 0 x supp 0 e
160 154 159 ssfid φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e supp 0 Fin
161 ovexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e V
162 isfsupp x f e V 0 V finSupp 0 x f e Fun x f e x f e supp 0 Fin
163 161 135 162 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x f e Fun x f e x f e supp 0 Fin
164 151 160 163 mpbir2and φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x finSupp 0 x f e
165 93 96 100 106 107 109 133 150 164 gsumadd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + f x f e = fld 𝑠 0 e + fld 𝑠 0 x f e
166 109 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b 0
167 166 nn0cnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b
168 112 ffvelcdmda φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b 0
169 168 nn0cnd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b
170 167 169 pncan3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b + x b - e b = x b
171 170 mpteq2dva φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b + x b - e b = b I x b
172 fvexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I e b V
173 ovexd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x b I x b e b V
174 109 feqmptd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e = b I e b
175 112 feqmptd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x = b I x b
176 107 168 166 175 174 offval2 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x x f e = b I x b e b
177 107 172 173 174 176 offval2 φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e + f x f e = b I e b + x b - e b
178 171 177 175 3eqtr4d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x e + f x f e = x
179 178 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + f x f e = fld 𝑠 0 x
180 165 179 eqtr3d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e = fld 𝑠 0 x
181 simplr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 x M + N
182 180 181 eqnetrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e M + N
183 oveq12 fld 𝑠 0 e = M fld 𝑠 0 x f e = N fld 𝑠 0 e + fld 𝑠 0 x f e = M + N
184 183 a1i φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e = M fld 𝑠 0 x f e = N fld 𝑠 0 e + fld 𝑠 0 x f e = M + N
185 184 necon3ad φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e + fld 𝑠 0 x f e M + N ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
186 182 185 mpd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
187 neorian fld 𝑠 0 e M fld 𝑠 0 x f e N ¬ fld 𝑠 0 e = M fld 𝑠 0 x f e = N
188 186 187 sylibr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x fld 𝑠 0 e M fld 𝑠 0 x f e N
189 63 89 188 mpjaodan φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
190 189 mpteq2dva φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N e c h 0 I | h -1 Fin | c f x P e R Q x f e = e c h 0 I | h -1 Fin | c f x 0 R
191 190 oveq2d φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = R e c h 0 I | h -1 Fin | c f x 0 R
192 ringmnd R Ring R Mnd
193 4 192 syl φ R Mnd
194 193 ad2antrr φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R Mnd
195 45 rabex c h 0 I | h -1 Fin | c f x V
196 42 gsumz R Mnd c h 0 I | h -1 Fin | c f x V R e c h 0 I | h -1 Fin | c f x 0 R = 0 R
197 194 195 196 sylancl φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x 0 R = 0 R
198 191 197 eqtrd φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
199 198 ex φ x h 0 I | h -1 Fin fld 𝑠 0 x M + N R e c h 0 I | h -1 Fin | c f x P e R Q x f e = 0 R
200 199 necon1d φ x h 0 I | h -1 Fin R e c h 0 I | h -1 Fin | c f x P e R Q x f e 0 R fld 𝑠 0 x = M + N
201 28 200 sylbid φ x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
202 201 ralrimiva φ x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
203 5 6 nn0addcld φ M + N 0
204 2 mplring I V R Ring Y Ring
205 13 4 204 syl2anc φ Y Ring
206 9 3 ringcl Y Ring P Base Y Q Base Y P · ˙ Q Base Y
207 205 14 15 206 syl3anc φ P · ˙ Q Base Y
208 1 2 9 42 11 13 4 203 207 ismhp3 φ P · ˙ Q H M + N x h 0 I | h -1 Fin P · ˙ Q x 0 R fld 𝑠 0 x = M + N
209 202 208 mpbird φ P · ˙ Q H M + N