Step |
Hyp |
Ref |
Expression |
1 |
|
mhppwdeg.h |
|
2 |
|
mhppwdeg.p |
|
3 |
|
mhppwdeg.t |
|
4 |
|
mhppwdeg.e |
|
5 |
|
mhppwdeg.r |
|
6 |
|
mhppwdeg.m |
|
7 |
|
mhppwdeg.n |
|
8 |
|
mhppwdeg.x |
|
9 |
|
oveq1 |
|
10 |
|
oveq2 |
|
11 |
10
|
fveq2d |
|
12 |
9 11
|
eleq12d |
|
13 |
|
oveq1 |
|
14 |
|
oveq2 |
|
15 |
14
|
fveq2d |
|
16 |
13 15
|
eleq12d |
|
17 |
|
oveq1 |
|
18 |
|
oveq2 |
|
19 |
18
|
fveq2d |
|
20 |
17 19
|
eleq12d |
|
21 |
|
oveq1 |
|
22 |
|
oveq2 |
|
23 |
22
|
fveq2d |
|
24 |
21 23
|
eleq12d |
|
25 |
|
reldmmhp |
|
26 |
25 1 8
|
elfvov1 |
|
27 |
2 26 5
|
mplsca |
|
28 |
27
|
fveq2d |
|
29 |
28
|
fveq2d |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
2 26 5
|
mpllmodd |
|
33 |
2 26 5
|
mplringd |
|
34 |
30 31 32 33
|
ascl1 |
|
35 |
29 34
|
eqtrd |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
36 37
|
ringidcl |
|
39 |
5 38
|
syl |
|
40 |
1 2 30 36 26 5 39
|
mhpsclcl |
|
41 |
35 40
|
eqeltrrd |
|
42 |
|
eqid |
|
43 |
1 2 42 26 5 6 8
|
mhpmpl |
|
44 |
3 42
|
mgpbas |
|
45 |
|
eqid |
|
46 |
3 45
|
ringidval |
|
47 |
44 46 4
|
mulg0 |
|
48 |
43 47
|
syl |
|
49 |
6
|
nn0cnd |
|
50 |
49
|
mul01d |
|
51 |
50
|
fveq2d |
|
52 |
41 48 51
|
3eltr4d |
|
53 |
|
eqid |
|
54 |
5
|
ad2antrr |
|
55 |
6
|
ad2antrr |
|
56 |
|
simplr |
|
57 |
55 56
|
nn0mulcld |
|
58 |
|
simpr |
|
59 |
8
|
ad2antrr |
|
60 |
1 2 53 54 57 55 58 59
|
mhpmulcl |
|
61 |
3
|
ringmgp |
|
62 |
33 61
|
syl |
|
63 |
62
|
ad2antrr |
|
64 |
43
|
ad2antrr |
|
65 |
3 53
|
mgpplusg |
|
66 |
44 4 65
|
mulgnn0p1 |
|
67 |
63 56 64 66
|
syl3anc |
|
68 |
49
|
ad2antrr |
|
69 |
56
|
nn0cnd |
|
70 |
|
1cnd |
|
71 |
68 69 70
|
adddid |
|
72 |
68
|
mulridd |
|
73 |
72
|
oveq2d |
|
74 |
71 73
|
eqtrd |
|
75 |
74
|
fveq2d |
|
76 |
60 67 75
|
3eltr4d |
|
77 |
12 16 20 24 52 76
|
nn0indd |
|
78 |
7 77
|
mpdan |
|