Metamath Proof Explorer


Theorem mhpsubg

Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhpsubg.h H = I mHomP R
mhpsubg.p P = I mPoly R
mhpsubg.i φ I V
mhpsubg.r φ R Grp
mhpsubg.n φ N 0
Assertion mhpsubg φ H N SubGrp P

Proof

Step Hyp Ref Expression
1 mhpsubg.h H = I mHomP R
2 mhpsubg.p P = I mPoly R
3 mhpsubg.i φ I V
4 mhpsubg.r φ R Grp
5 mhpsubg.n φ N 0
6 eqid Base P = Base P
7 3 adantr φ x H N I V
8 4 adantr φ x H N R Grp
9 5 adantr φ x H N N 0
10 simpr φ x H N x H N
11 1 2 6 7 8 9 10 mhpmpl φ x H N x Base P
12 11 ex φ x H N x Base P
13 12 ssrdv φ H N Base P
14 eqid 0 R = 0 R
15 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
16 1 14 15 3 4 5 mhp0cl φ h 0 I | h -1 Fin × 0 R H N
17 16 ne0d φ H N
18 eqid + P = + P
19 8 adantr φ x H N y H N R Grp
20 9 adantr φ x H N y H N N 0
21 simplr φ x H N y H N x H N
22 simpr φ x H N y H N y H N
23 1 2 18 19 20 21 22 mhpaddcl φ x H N y H N x + P y H N
24 23 ralrimiva φ x H N y H N x + P y H N
25 eqid inv g P = inv g P
26 1 2 25 8 9 10 mhpinvcl φ x H N inv g P x H N
27 24 26 jca φ x H N y H N x + P y H N inv g P x H N
28 27 ralrimiva φ x H N y H N x + P y H N inv g P x H N
29 2 mplgrp I V R Grp P Grp
30 3 4 29 syl2anc φ P Grp
31 6 18 25 issubg2 P Grp H N SubGrp P H N Base P H N x H N y H N x + P y H N inv g P x H N
32 30 31 syl φ H N SubGrp P H N Base P H N x H N y H N x + P y H N inv g P x H N
33 13 17 28 32 mpbir3and φ H N SubGrp P