Metamath Proof Explorer


Theorem mhpvscacl

Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023) Remove sethood hypothesis. (Revised by SN, 18-May-2025)

Ref Expression
Hypotheses mhpvscacl.h H = I mHomP R
mhpvscacl.p P = I mPoly R
mhpvscacl.t · ˙ = P
mhpvscacl.k K = Base R
mhpvscacl.r φ R Ring
mhpvscacl.n φ N 0
mhpvscacl.x φ X K
mhpvscacl.f φ F H N
Assertion mhpvscacl φ X · ˙ F H N

Proof

Step Hyp Ref Expression
1 mhpvscacl.h H = I mHomP R
2 mhpvscacl.p P = I mPoly R
3 mhpvscacl.t · ˙ = P
4 mhpvscacl.k K = Base R
5 mhpvscacl.r φ R Ring
6 mhpvscacl.n φ N 0
7 mhpvscacl.x φ X K
8 mhpvscacl.f φ F H N
9 eqid Base P = Base P
10 eqid 0 R = 0 R
11 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
12 reldmmhp Rel dom mHomP
13 12 1 8 elfvov1 φ I V
14 2 mpllmod I V R Ring P LMod
15 13 5 14 syl2anc φ P LMod
16 7 4 eleqtrdi φ X Base R
17 2 13 5 mplsca φ R = Scalar P
18 17 fveq2d φ Base R = Base Scalar P
19 16 18 eleqtrd φ X Base Scalar P
20 1 2 9 13 5 6 8 mhpmpl φ F Base P
21 eqid Scalar P = Scalar P
22 eqid Base Scalar P = Base Scalar P
23 9 21 3 22 lmodvscl P LMod X Base Scalar P F Base P X · ˙ F Base P
24 15 19 20 23 syl3anc φ X · ˙ F Base P
25 2 4 9 11 24 mplelf φ X · ˙ F : h 0 I | h -1 Fin K
26 eqid R = R
27 7 adantr φ k h 0 I | h -1 Fin supp 0 R F X K
28 20 adantr φ k h 0 I | h -1 Fin supp 0 R F F Base P
29 eldifi k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
30 29 adantl φ k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
31 2 3 4 9 26 11 27 28 30 mplvscaval φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = X R F k
32 2 4 9 11 20 mplelf φ F : h 0 I | h -1 Fin K
33 ssidd φ F supp 0 R F supp 0 R
34 ovexd φ 0 I V
35 11 34 rabexd φ h 0 I | h -1 Fin V
36 fvexd φ 0 R V
37 32 33 35 36 suppssr φ k h 0 I | h -1 Fin supp 0 R F F k = 0 R
38 37 oveq2d φ k h 0 I | h -1 Fin supp 0 R F X R F k = X R 0 R
39 4 26 10 ringrz R Ring X K X R 0 R = 0 R
40 5 7 39 syl2anc φ X R 0 R = 0 R
41 40 adantr φ k h 0 I | h -1 Fin supp 0 R F X R 0 R = 0 R
42 31 38 41 3eqtrd φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = 0 R
43 25 42 suppss φ X · ˙ F supp 0 R F supp 0 R
44 1 10 11 13 5 6 8 mhpdeg φ F supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
45 43 44 sstrd φ X · ˙ F supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
46 1 2 9 10 11 13 5 6 24 45 ismhp2 φ X · ˙ F H N