Metamath Proof Explorer


Theorem mhpvscacl

Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023) Remove sethood hypothesis. (Revised by SN, 18-May-2025)

Ref Expression
Hypotheses mhpvscacl.h H = I mHomP R
mhpvscacl.p P = I mPoly R
mhpvscacl.t · ˙ = P
mhpvscacl.k K = Base R
mhpvscacl.r φ R Ring
mhpvscacl.n φ N 0
mhpvscacl.x φ X K
mhpvscacl.f φ F H N
Assertion mhpvscacl φ X · ˙ F H N

Proof

Step Hyp Ref Expression
1 mhpvscacl.h H = I mHomP R
2 mhpvscacl.p P = I mPoly R
3 mhpvscacl.t · ˙ = P
4 mhpvscacl.k K = Base R
5 mhpvscacl.r φ R Ring
6 mhpvscacl.n φ N 0
7 mhpvscacl.x φ X K
8 mhpvscacl.f φ F H N
9 eqid Base P = Base P
10 eqid 0 R = 0 R
11 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
12 reldmmhp Rel dom mHomP
13 12 1 8 elfvov1 φ I V
14 2 13 5 mpllmodd φ P LMod
15 7 4 eleqtrdi φ X Base R
16 2 13 5 mplsca φ R = Scalar P
17 16 fveq2d φ Base R = Base Scalar P
18 15 17 eleqtrd φ X Base Scalar P
19 1 2 9 13 5 6 8 mhpmpl φ F Base P
20 eqid Scalar P = Scalar P
21 eqid Base Scalar P = Base Scalar P
22 9 20 3 21 lmodvscl P LMod X Base Scalar P F Base P X · ˙ F Base P
23 14 18 19 22 syl3anc φ X · ˙ F Base P
24 2 4 9 11 23 mplelf φ X · ˙ F : h 0 I | h -1 Fin K
25 eqid R = R
26 7 adantr φ k h 0 I | h -1 Fin supp 0 R F X K
27 19 adantr φ k h 0 I | h -1 Fin supp 0 R F F Base P
28 eldifi k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
29 28 adantl φ k h 0 I | h -1 Fin supp 0 R F k h 0 I | h -1 Fin
30 2 3 4 9 25 11 26 27 29 mplvscaval φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = X R F k
31 2 4 9 11 19 mplelf φ F : h 0 I | h -1 Fin K
32 ssidd φ F supp 0 R F supp 0 R
33 ovexd φ 0 I V
34 11 33 rabexd φ h 0 I | h -1 Fin V
35 fvexd φ 0 R V
36 31 32 34 35 suppssr φ k h 0 I | h -1 Fin supp 0 R F F k = 0 R
37 36 oveq2d φ k h 0 I | h -1 Fin supp 0 R F X R F k = X R 0 R
38 4 25 10 ringrz R Ring X K X R 0 R = 0 R
39 5 7 38 syl2anc φ X R 0 R = 0 R
40 39 adantr φ k h 0 I | h -1 Fin supp 0 R F X R 0 R = 0 R
41 30 37 40 3eqtrd φ k h 0 I | h -1 Fin supp 0 R F X · ˙ F k = 0 R
42 24 41 suppss φ X · ˙ F supp 0 R F supp 0 R
43 1 10 11 13 5 6 8 mhpdeg φ F supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
44 42 43 sstrd φ X · ˙ F supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
45 1 2 9 10 11 13 5 6 23 44 ismhp2 φ X · ˙ F H N