Metamath Proof Explorer


Theorem midcl

Description: Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
midcl.1 φ A P
midcl.2 φ B P
Assertion midcl φ A mid 𝒢 G B P

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 midcl.1 φ A P
7 midcl.2 φ B P
8 1 2 3 4 5 midf φ mid 𝒢 G : P × P P
9 8 6 7 fovrnd φ A mid 𝒢 G B P