Metamath Proof Explorer


Theorem mideu

Description: Existence and uniqueness of the midpoint, Theorem 8.22 of Schwabhauser p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
mideu.s S = pInv 𝒢 G
mideu.1 φ A P
mideu.2 φ B P
mideu.3 φ G Dim 𝒢 2
Assertion mideu φ ∃! x P B = S x A

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 mideu.s S = pInv 𝒢 G
7 mideu.1 φ A P
8 mideu.2 φ B P
9 mideu.3 φ G Dim 𝒢 2
10 1 2 3 4 5 6 7 8 9 midex φ x P B = S x A
11 5 ad2antrr φ x P y P B = S x A B = S y A G 𝒢 Tarski
12 simplrl φ x P y P B = S x A B = S y A x P
13 simplrr φ x P y P B = S x A B = S y A y P
14 7 ad2antrr φ x P y P B = S x A B = S y A A P
15 8 ad2antrr φ x P y P B = S x A B = S y A B P
16 simprl φ x P y P B = S x A B = S y A B = S x A
17 16 eqcomd φ x P y P B = S x A B = S y A S x A = B
18 simprr φ x P y P B = S x A B = S y A B = S y A
19 18 eqcomd φ x P y P B = S x A B = S y A S y A = B
20 1 2 3 4 6 11 12 13 14 15 17 19 miduniq φ x P y P B = S x A B = S y A x = y
21 20 ex φ x P y P B = S x A B = S y A x = y
22 21 ralrimivva φ x P y P B = S x A B = S y A x = y
23 fveq2 x = y S x = S y
24 23 fveq1d x = y S x A = S y A
25 24 eqeq2d x = y B = S x A B = S y A
26 25 rmo4 * x P B = S x A x P y P B = S x A B = S y A x = y
27 22 26 sylibr φ * x P B = S x A
28 reu5 ∃! x P B = S x A x P B = S x A * x P B = S x A
29 10 27 28 sylanbrc φ ∃! x P B = S x A