Metamath Proof Explorer


Theorem midex

Description: Existence of the midpoint, part Theorem 8.22 of Schwabhauser p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
mideu.s S = pInv 𝒢 G
mideu.1 φ A P
mideu.2 φ B P
mideu.3 φ G Dim 𝒢 2
Assertion midex φ x P B = S x A

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 mideu.s S = pInv 𝒢 G
7 mideu.1 φ A P
8 mideu.2 φ B P
9 mideu.3 φ G Dim 𝒢 2
10 5 adantr φ A = B G 𝒢 Tarski
11 7 adantr φ A = B A P
12 eqid S A = S A
13 1 2 3 4 6 10 11 12 mircinv φ A = B S A A = A
14 simpr φ A = B A = B
15 13 14 eqtr2d φ A = B B = S A A
16 fveq2 x = A S x = S A
17 16 fveq1d x = A S x A = S A A
18 17 rspceeqv A P B = S A A x P B = S x A
19 7 15 18 syl2an2r φ A = B x P B = S x A
20 5 ad3antrrr φ A B q P B L q 𝒢 G A L B G 𝒢 Tarski
21 20 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q G 𝒢 Tarski
22 7 ad3antrrr φ A B q P B L q 𝒢 G A L B A P
23 22 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A P
24 8 ad3antrrr φ A B q P B L q 𝒢 G A L B B P
25 24 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q B P
26 simpllr φ A B q P B L q 𝒢 G A L B A B
27 26 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A B
28 simplr φ A B q P B L q 𝒢 G A L B q P
29 28 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q q P
30 simp-4r φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q p P
31 simpllr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q t P
32 simp-5r φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q B L q 𝒢 G A L B
33 4 21 32 perpln1 φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q B L q ran L
34 1 3 4 21 23 25 27 tgelrnln φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L B ran L
35 1 2 3 4 21 33 34 32 perpcom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L B 𝒢 G B L q
36 1 3 4 21 25 29 33 tglnne φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q B q
37 1 3 4 21 25 29 36 tglinecom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q B L q = q L B
38 35 37 breqtrd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L B 𝒢 G q L B
39 simplr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L p 𝒢 G A L B t A L B A = B t q I p
40 39 simpld φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L p 𝒢 G A L B
41 4 21 40 perpln1 φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L p ran L
42 1 2 3 4 21 41 34 40 perpcom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A L B 𝒢 G A L p
43 27 neneqd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q ¬ A = B
44 39 simprd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q t A L B A = B t q I p
45 44 simpld φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q t A L B A = B
46 45 orcomd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A = B t A L B
47 46 ord φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q ¬ A = B t A L B
48 43 47 mpd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q t A L B
49 44 simprd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q t q I p
50 simpr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q A - ˙ p 𝒢 G B - ˙ q
51 1 2 3 4 21 6 23 25 27 29 30 31 38 42 48 49 50 mideulem φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q x P B = S x A
52 20 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p G 𝒢 Tarski
53 52 adantr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B G 𝒢 Tarski
54 simprl φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B x P
55 eqid S x = S x
56 24 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B P
57 56 adantr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B B P
58 simprr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B A = S x B
59 58 eqcomd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B S x B = A
60 1 2 3 4 6 53 54 55 57 59 mircom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B S x A = B
61 60 eqcomd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B B = S x A
62 22 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A P
63 26 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A B
64 63 necomd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B A
65 simp-4r φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p p P
66 28 ad4antr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p q P
67 simpllr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t P
68 simplr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A L p 𝒢 G A L B t A L B A = B t q I p
69 68 simpld φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A L p 𝒢 G A L B
70 4 52 69 perpln1 φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A L p ran L
71 1 3 4 52 62 65 70 tglnne φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A p
72 1 3 4 52 62 65 71 tglinecom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A L p = p L A
73 72 70 eqeltrrd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p p L A ran L
74 1 3 4 52 56 62 64 tgelrnln φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B L A ran L
75 1 3 4 52 62 56 63 tglinecom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A L B = B L A
76 69 72 75 3brtr3d φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p p L A 𝒢 G B L A
77 1 2 3 4 52 73 74 76 perpcom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B L A 𝒢 G p L A
78 simp-5r φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B L q 𝒢 G A L B
79 4 52 78 perpln1 φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B L q ran L
80 78 75 breqtrd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B L q 𝒢 G B L A
81 1 2 3 4 52 79 74 80 perpcom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B L A 𝒢 G B L q
82 63 neneqd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p ¬ A = B
83 68 simprd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t A L B A = B t q I p
84 83 simpld φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t A L B A = B
85 84 orcomd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p A = B t A L B
86 85 ord φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p ¬ A = B t A L B
87 82 86 mpd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t A L B
88 87 75 eleqtrd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t B L A
89 83 simprd φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t q I p
90 1 2 3 52 66 67 65 89 tgbtwncom φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p t p I q
91 simpr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p B - ˙ q 𝒢 G A - ˙ p
92 1 2 3 4 52 6 56 62 64 65 66 67 77 81 88 90 91 mideulem φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P A = S x B
93 61 92 reximddv φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B - ˙ q 𝒢 G A - ˙ p x P B = S x A
94 eqid 𝒢 G = 𝒢 G
95 20 ad3antrrr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p G 𝒢 Tarski
96 22 ad3antrrr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A P
97 simpllr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p p P
98 24 ad3antrrr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p B P
99 simp-5r φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p q P
100 1 2 3 94 95 96 97 98 99 legtrid φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p A - ˙ p 𝒢 G B - ˙ q B - ˙ q 𝒢 G A - ˙ p
101 51 93 100 mpjaodan φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p x P B = S x A
102 9 ad3antrrr φ A B q P B L q 𝒢 G A L B G Dim 𝒢 2
103 1 2 3 4 20 22 24 28 26 102 colperpex φ A B q P B L q 𝒢 G A L B p P A L p 𝒢 G A L B t P t A L B A = B t q I p
104 r19.42v t P A L p 𝒢 G A L B t A L B A = B t q I p A L p 𝒢 G A L B t P t A L B A = B t q I p
105 104 rexbii p P t P A L p 𝒢 G A L B t A L B A = B t q I p p P A L p 𝒢 G A L B t P t A L B A = B t q I p
106 103 105 sylibr φ A B q P B L q 𝒢 G A L B p P t P A L p 𝒢 G A L B t A L B A = B t q I p
107 101 106 r19.29vva φ A B q P B L q 𝒢 G A L B x P B = S x A
108 5 adantr φ A B G 𝒢 Tarski
109 8 adantr φ A B B P
110 7 adantr φ A B A P
111 simpr φ A B A B
112 111 necomd φ A B B A
113 9 adantr φ A B G Dim 𝒢 2
114 1 2 3 4 108 109 110 110 112 113 colperpex φ A B q P B L q 𝒢 G B L A s P s B L A B = A s A I q
115 simprl φ A B B L q 𝒢 G B L A s P s B L A B = A s A I q B L q 𝒢 G B L A
116 1 3 4 108 110 109 111 tglinecom φ A B A L B = B L A
117 116 adantr φ A B B L q 𝒢 G B L A s P s B L A B = A s A I q A L B = B L A
118 115 117 breqtrrd φ A B B L q 𝒢 G B L A s P s B L A B = A s A I q B L q 𝒢 G A L B
119 118 ex φ A B B L q 𝒢 G B L A s P s B L A B = A s A I q B L q 𝒢 G A L B
120 119 reximdv φ A B q P B L q 𝒢 G B L A s P s B L A B = A s A I q q P B L q 𝒢 G A L B
121 114 120 mpd φ A B q P B L q 𝒢 G A L B
122 107 121 r19.29a φ A B x P B = S x A
123 19 122 pm2.61dane φ x P B = S x A