Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|
2 |
|
mirval.d |
|
3 |
|
mirval.i |
|
4 |
|
mirval.l |
|
5 |
|
mirval.s |
|
6 |
|
mirval.g |
|
7 |
|
midexlem.m |
|
8 |
|
midexlem.a |
|
9 |
|
midexlem.b |
|
10 |
|
midexlem.c |
|
11 |
|
midexlem.1 |
|
12 |
|
fveq2 |
|
13 |
7 12
|
syl5eq |
|
14 |
13
|
fveq1d |
|
15 |
14
|
rspceeqv |
|
16 |
10 15
|
sylan |
|
17 |
16
|
adantlr |
|
18 |
|
eqid |
|
19 |
1 2 3 4 5 6 8 18
|
mircinv |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
20 21
|
eqtr2d |
|
23 |
|
fveq2 |
|
24 |
7 23
|
syl5eq |
|
25 |
24
|
fveq1d |
|
26 |
25
|
rspceeqv |
|
27 |
8 22 26
|
syl2an2r |
|
28 |
27
|
adantlr |
|
29 |
6
|
adantr |
|
30 |
|
eqid |
|
31 |
8
|
adantr |
|
32 |
9
|
adantr |
|
33 |
10
|
adantr |
|
34 |
|
simpr |
|
35 |
11
|
adantr |
|
36 |
1 2 3 4 5 29 30 31 32 33 34 35
|
colmid |
|
37 |
17 28 36
|
mpjaodan |
|
38 |
6
|
adantr |
|
39 |
38
|
ad2antrr |
|
40 |
39
|
ad2antrr |
|
41 |
40
|
ad2antrr |
|
42 |
41
|
adantr |
|
43 |
|
simprl |
|
44 |
8
|
adantr |
|
45 |
44
|
ad2antrr |
|
46 |
45
|
ad2antrr |
|
47 |
46
|
ad2antrr |
|
48 |
47
|
adantr |
|
49 |
9
|
ad3antrrr |
|
50 |
49
|
ad2antrr |
|
51 |
50
|
ad2antrr |
|
52 |
51
|
adantr |
|
53 |
42
|
ad2antrr |
|
54 |
|
simpllr |
|
55 |
54
|
ad2antrr |
|
56 |
10
|
adantr |
|
57 |
56
|
ad2antrr |
|
58 |
57
|
ad2antrr |
|
59 |
58
|
ad2antrr |
|
60 |
59
|
adantr |
|
61 |
60
|
ad2antrr |
|
62 |
43
|
ad2antrr |
|
63 |
|
eqid |
|
64 |
52
|
ad2antrr |
|
65 |
48
|
ad2antrr |
|
66 |
|
simpr |
|
67 |
9
|
adantr |
|
68 |
|
simpr |
|
69 |
1 3 4 38 56 44 67 68
|
ncolne1 |
|
70 |
69
|
ad7antr |
|
71 |
70
|
ad2antrr |
|
72 |
71
|
adantr |
|
73 |
72
|
necomd |
|
74 |
66 73
|
eqnetrd |
|
75 |
53
|
adantr |
|
76 |
55
|
adantr |
|
77 |
65
|
adantr |
|
78 |
61
|
adantr |
|
79 |
|
simplr |
|
80 |
79
|
ad3antrrr |
|
81 |
80
|
ad2antrr |
|
82 |
81
|
adantr |
|
83 |
68
|
ad9antr |
|
84 |
1 4 3 53 65 64 61 83
|
ncolrot2 |
|
85 |
6
|
adantr |
|
86 |
9
|
adantr |
|
87 |
8
|
adantr |
|
88 |
10
|
adantr |
|
89 |
|
simpr |
|
90 |
1 4 3 85 86 87 88 89
|
colcom |
|
91 |
90
|
stoic1a |
|
92 |
91
|
ad9antr |
|
93 |
1 3 4 53 61 64 65 92
|
ncolne1 |
|
94 |
93
|
necomd |
|
95 |
|
simprl |
|
96 |
95
|
ad3antrrr |
|
97 |
96
|
ad2antrr |
|
98 |
1 3 4 53 61 64 81 93 97
|
btwnlng3 |
|
99 |
1 3 4 53 64 61 81 94 98
|
lncom |
|
100 |
53
|
adantr |
|
101 |
61
|
adantr |
|
102 |
64
|
adantr |
|
103 |
97
|
adantr |
|
104 |
|
simpr |
|
105 |
104
|
oveq2d |
|
106 |
103 105
|
eleqtrd |
|
107 |
1 2 3 100 101 102 106
|
axtgbtwnid |
|
108 |
93
|
adantr |
|
109 |
108
|
neneqd |
|
110 |
107 109
|
pm2.65da |
|
111 |
110
|
neqned |
|
112 |
1 3 4 53 64 61 65 81 84 99 111
|
ncolncol |
|
113 |
1 4 3 53 61 65 81 112
|
ncolcom |
|
114 |
113
|
adantr |
|
115 |
|
simp-4r |
|
116 |
115
|
ad2antrr |
|
117 |
116
|
adantr |
|
118 |
117
|
ad2antrr |
|
119 |
|
simp-4r |
|
120 |
119
|
simprd |
|
121 |
120
|
eqcomd |
|
122 |
121
|
ad2antrr |
|
123 |
1 2 3 53 65 118 64 81 122
|
tgcgrcomlr |
|
124 |
|
simpllr |
|
125 |
124
|
ad5antr |
|
126 |
125
|
simprd |
|
127 |
126
|
necomd |
|
128 |
1 2 3 53 118 65 81 64 123 127
|
tgcgrneq |
|
129 |
1 3 4 53 61 64 65 81 92 98 128
|
ncolncol |
|
130 |
1 3 4 53 81 64 65 129
|
ncolne2 |
|
131 |
130
|
necomd |
|
132 |
|
simp-4r |
|
133 |
132
|
simpld |
|
134 |
1 3 4 53 65 81 55 131 133
|
btwnlng1 |
|
135 |
1 3 4 53 81 65 55 130 134
|
lncom |
|
136 |
135
|
adantr |
|
137 |
|
simpr |
|
138 |
1 3 4 75 82 77 78 76 114 136 137
|
ncolncol |
|
139 |
1 3 4 75 76 77 78 138
|
ncolne2 |
|
140 |
74 139
|
pm2.61dane |
|
141 |
|
simpllr |
|
142 |
141
|
simprd |
|
143 |
142
|
simprd |
|
144 |
1 4 3 53 55 62 61 143
|
btwncolg3 |
|
145 |
|
simplr |
|
146 |
|
simplr |
|
147 |
146
|
simprd |
|
148 |
147
|
ad2antrr |
|
149 |
|
simprl |
|
150 |
124
|
simpld |
|
151 |
150
|
ad2antrr |
|
152 |
151
|
adantr |
|
153 |
11
|
ad8antr |
|
154 |
153
|
eqcomd |
|
155 |
1 2 3 42 48 52
|
axtgcgrrflx |
|
156 |
1 2 3 42 60 48 117 60 52 80 52 48 70 152 96 153 121 154 155
|
axtg5seg |
|
157 |
1 2 3 42 117 52 80 48 156
|
tgcgrcomlr |
|
158 |
157
|
ad2antrr |
|
159 |
|
simprr |
|
160 |
1 2 3 63 53 64 55 118 65 145 81 159
|
cgr3simp2 |
|
161 |
1 2 3 53 64 65
|
axtgcgrrflx |
|
162 |
1 2 3 53 64 55 118 65 65 145 81 64 148 149 158 160 161 123
|
tgifscgr |
|
163 |
|
simp-10l |
|
164 |
125
|
simpld |
|
165 |
1 3 4 53 61 65 118 71 164
|
btwnlng3 |
|
166 |
1 3 4 53 61 65 64 118 83 165 127
|
ncolncol |
|
167 |
6
|
ad2antrr |
|
168 |
|
simplr |
|
169 |
8
|
ad2antrr |
|
170 |
9
|
ad2antrr |
|
171 |
|
simpr |
|
172 |
1 4 3 167 168 169 170 171
|
colrot1 |
|
173 |
172
|
stoic1a |
|
174 |
163 118 166 173
|
syl21anc |
|
175 |
1 3 4 53 118 65 64 166
|
ncolne2 |
|
176 |
175
|
necomd |
|
177 |
176
|
neneqd |
|
178 |
1 4 3 53 65 81 55 133
|
btwncolg1 |
|
179 |
1 2 3 53 55 65 145 64 162
|
tgcgrcomlr |
|
180 |
120
|
ad2antrr |
|
181 |
1 2 3 53 118 81
|
axtgcgrrflx |
|
182 |
1 2 3 53 64 55 118 81 65 145 81 118 148 149 158 160 180 181
|
tgifscgr |
|
183 |
1 2 3 53 65 145 81 149
|
tgbtwncom |
|
184 |
1 2 3 42 52 54 117 147
|
tgbtwncom |
|
185 |
184
|
ad2antrr |
|
186 |
160
|
eqcomd |
|
187 |
1 2 3 53 145 81 55 118 186
|
tgcgrcomlr |
|
188 |
1 2 3 63 53 64 55 118 65 145 81 159
|
cgr3simp1 |
|
189 |
188
|
eqcomd |
|
190 |
1 2 3 53 65 145 64 55 189
|
tgcgrcomlr |
|
191 |
1 2 3 53 81 145 65 118 55 64 183 185 187 190
|
tgcgrextend |
|
192 |
1 2 63 53 65 55 81 64 145 118 179 182 191
|
trgcgr |
|
193 |
1 4 3 53 65 55 81 63 64 145 118 178 192
|
lnxfr |
|
194 |
193
|
orcomd |
|
195 |
194
|
ord |
|
196 |
177 195
|
mpd |
|
197 |
1 3 4 53 64 118 55 176 148
|
btwnlng1 |
|
198 |
1 3 4 53 65 81 145 131 149
|
btwnlng1 |
|
199 |
1 3 4 53 64 118 65 81 174 196 197 198 134
|
tglineinteq |
|
200 |
199
|
oveq1d |
|
201 |
162 200
|
eqtr2d |
|
202 |
154
|
ad2antrr |
|
203 |
1 4 3 53 55 61 62 63 64 65 2 140 144 201 202
|
lncgr |
|
204 |
1 2 3 63 42 52 54 117 48 80 147 157
|
tgcgrxfr |
|
205 |
203 204
|
r19.29a |
|
206 |
|
simprrl |
|
207 |
1 2 3 42 48 43 52 206
|
tgbtwncom |
|
208 |
1 2 3 4 5 42 43 7 48 52 205 207
|
ismir |
|
209 |
|
simplr |
|
210 |
|
simprr |
|
211 |
1 2 3 41 59 51 116 47 209 151 210
|
axtgpasch |
|
212 |
208 211
|
reximddv |
|
213 |
1 2 3 40 58 46 115 150
|
tgbtwncom |
|
214 |
1 2 3 40 58 50 79 95
|
tgbtwncom |
|
215 |
1 2 3 40 115 79 58 46 50 213 214
|
axtgpasch |
|
216 |
212 215
|
r19.29a |
|
217 |
|
simplr |
|
218 |
1 2 3 39 57 49 45 217
|
axtgsegcon |
|
219 |
216 218
|
r19.29a |
|
220 |
1
|
fvexi |
|
221 |
220
|
a1i |
|
222 |
221 56 44 69
|
nehash2 |
|
223 |
1 2 3 38 56 44 222
|
tgbtwndiff |
|
224 |
219 223
|
r19.29a |
|
225 |
37 224
|
pm2.61dan |
|