Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Midpoints and Line Mirroring
midid
Next ⟩
midcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
midid
Description:
Midpoint of a null segment.
(Contributed by
Thierry Arnoux
, 7-Dec-2019)
Ref
Expression
Hypotheses
ismid.p
⊢
P
=
Base
G
ismid.d
⊢
-
˙
=
dist
⁡
G
ismid.i
⊢
I
=
Itv
⁡
G
ismid.g
⊢
φ
→
G
∈
𝒢
Tarski
ismid.1
⊢
φ
→
G
Dim
𝒢
≥
2
midcl.1
⊢
φ
→
A
∈
P
midcl.2
⊢
φ
→
B
∈
P
Assertion
midid
⊢
φ
→
A
mid
𝒢
⁡
G
A
=
A
Proof
Step
Hyp
Ref
Expression
1
ismid.p
⊢
P
=
Base
G
2
ismid.d
⊢
-
˙
=
dist
⁡
G
3
ismid.i
⊢
I
=
Itv
⁡
G
4
ismid.g
⊢
φ
→
G
∈
𝒢
Tarski
5
ismid.1
⊢
φ
→
G
Dim
𝒢
≥
2
6
midcl.1
⊢
φ
→
A
∈
P
7
midcl.2
⊢
φ
→
B
∈
P
8
1
2
3
4
5
6
6
midcl
⊢
φ
→
A
mid
𝒢
⁡
G
A
∈
P
9
1
2
3
4
5
6
6
midbtwn
⊢
φ
→
A
mid
𝒢
⁡
G
A
∈
A
I
A
10
1
2
3
4
6
8
9
axtgbtwnid
⊢
φ
→
A
=
A
mid
𝒢
⁡
G
A
11
10
eqcomd
⊢
φ
→
A
mid
𝒢
⁡
G
A
=
A