Metamath Proof Explorer


Theorem midid

Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
midcl.1 φ A P
midcl.2 φ B P
Assertion midid φ A mid 𝒢 G A = A

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 midcl.1 φ A P
7 midcl.2 φ B P
8 1 2 3 4 5 6 6 midcl φ A mid 𝒢 G A P
9 1 2 3 4 5 6 6 midbtwn φ A mid 𝒢 G A A I A
10 1 2 3 4 6 8 9 axtgbtwnid φ A = A mid 𝒢 G A
11 10 eqcomd φ A mid 𝒢 G A = A