Metamath Proof Explorer


Theorem miduniq1

Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
miduniq1.a φ A P
miduniq1.b φ B P
miduniq1.x φ X P
miduniq1.e φ S A X = S B X
Assertion miduniq1 φ A = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 miduniq1.a φ A P
8 miduniq1.b φ B P
9 miduniq1.x φ X P
10 miduniq1.e φ S A X = S B X
11 eqid S A = S A
12 1 2 3 4 5 6 7 11 9 mircl φ S A X P
13 eqidd φ S A X = S A X
14 10 eqcomd φ S B X = S A X
15 1 2 3 4 5 6 7 8 9 12 13 14 miduniq φ A = B