Metamath Proof Explorer


Theorem miduniq2

Description: If two point inversions commute, they are identical. Theorem 7.19 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
miduniq2.a φ A P
miduniq2.b φ B P
miduniq2.x φ X P
miduniq2.e φ S A S B X = S B S A X
Assertion miduniq2 φ A = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 miduniq2.a φ A P
8 miduniq2.b φ B P
9 miduniq2.x φ X P
10 miduniq2.e φ S A S B X = S B S A X
11 eqid S B = S B
12 1 2 3 4 5 6 8 11 mirf φ S B : P P
13 12 7 ffvelrnd φ S B A P
14 eqid S B A = S B A
15 eqid S B S B X = S B S B X
16 eqid S B S B S A X = S B S B S A X
17 12 9 ffvelrnd φ S B X P
18 eqid S A = S A
19 1 2 3 4 5 6 7 18 9 mircl φ S A X P
20 12 19 ffvelrnd φ S B S A X P
21 1 2 3 4 5 6 11 14 15 16 8 7 17 20 10 mirauto φ S S B A S B S B X = S B S B S A X
22 1 2 3 4 5 6 8 11 9 mirmir φ S B S B X = X
23 22 fveq2d φ S S B A S B S B X = S S B A X
24 1 2 3 4 5 6 8 11 19 mirmir φ S B S B S A X = S A X
25 21 23 24 3eqtr3d φ S S B A X = S A X
26 1 2 3 4 5 6 13 7 9 25 miduniq1 φ S B A = A
27 1 2 3 4 5 6 8 11 7 mirinv φ S B A = A B = A
28 26 27 mpbid φ B = A
29 28 eqcomd φ A = B