Metamath Proof Explorer


Theorem midwwlks2s3

Description: There is a vertex between the endpoints of a walk of length 2 between two vertices as length 3 string. (Contributed by AV, 10-Jan-2022)

Ref Expression
Hypothesis elwwlks2s3.v V = Vtx G
Assertion midwwlks2s3 W 2 WWalksN G b V W 1 = b

Proof

Step Hyp Ref Expression
1 elwwlks2s3.v V = Vtx G
2 1 elwwlks2s3 W 2 WWalksN G a V b V c V W = ⟨“ abc ”⟩
3 fveq1 W = ⟨“ abc ”⟩ W 1 = ⟨“ abc ”⟩ 1
4 s3fv1 b V ⟨“ abc ”⟩ 1 = b
5 3 4 sylan9eqr b V W = ⟨“ abc ”⟩ W 1 = b
6 5 ex b V W = ⟨“ abc ”⟩ W 1 = b
7 6 adantl a V b V W = ⟨“ abc ”⟩ W 1 = b
8 7 rexlimdvw a V b V c V W = ⟨“ abc ”⟩ W 1 = b
9 8 reximdva a V b V c V W = ⟨“ abc ”⟩ b V W 1 = b
10 9 rexlimiv a V b V c V W = ⟨“ abc ”⟩ b V W 1 = b
11 2 10 syl W 2 WWalksN G b V W 1 = b