Metamath Proof Explorer


Theorem min1d

Description: The minimum of two numbers is less than or equal to the first. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses min1d.1 φ A
min1d.2 φ B
Assertion min1d φ if A B A B A

Proof

Step Hyp Ref Expression
1 min1d.1 φ A
2 min1d.2 φ B
3 min1 A B if A B A B A
4 1 2 3 syl2anc φ if A B A B A