Metamath Proof Explorer


Theorem min2

Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion min2 A B if A B A B B

Proof

Step Hyp Ref Expression
1 rexr A A *
2 rexr B B *
3 xrmin2 A * B * if A B A B B
4 1 2 3 syl2an A B if A B A B B