Metamath Proof Explorer


Theorem min2d

Description: The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses min2d.1 φ A
min2d.2 φ B
Assertion min2d φ if A B A B B

Proof

Step Hyp Ref Expression
1 min2d.1 φ A
2 min2d.2 φ B
3 min2 A B if A B A B B
4 1 2 3 syl2anc φ if A B A B B