Metamath Proof Explorer


Theorem minmar1cl

Description: Closure of the row replacement function for square matrices: The matrix for a minor is a matrix. (Contributed by AV, 13-Feb-2019)

Ref Expression
Hypotheses minmar1cl.a A = N Mat R
minmar1cl.b B = Base A
Assertion minmar1cl R Ring M B K N L N K N minMatR1 R M L B

Proof

Step Hyp Ref Expression
1 minmar1cl.a A = N Mat R
2 minmar1cl.b B = Base A
3 eqid 1 R = 1 R
4 1 2 3 minmar1marrep R Ring M B N minMatR1 R M = M N matRRep R 1 R
5 4 adantr R Ring M B K N L N N minMatR1 R M = M N matRRep R 1 R
6 5 oveqd R Ring M B K N L N K N minMatR1 R M L = K M N matRRep R 1 R L
7 simpl R Ring M B R Ring
8 simpr R Ring M B M B
9 eqid Base R = Base R
10 9 3 ringidcl R Ring 1 R Base R
11 10 adantr R Ring M B 1 R Base R
12 7 8 11 3jca R Ring M B R Ring M B 1 R Base R
13 1 2 marrepcl R Ring M B 1 R Base R K N L N K M N matRRep R 1 R L B
14 12 13 sylan R Ring M B K N L N K M N matRRep R 1 R L B
15 6 14 eqeltrd R Ring M B K N L N K N minMatR1 R M L B