Metamath Proof Explorer


Theorem minmar1eval

Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018)

Ref Expression
Hypotheses minmar1fval.a A = N Mat R
minmar1fval.b B = Base A
minmar1fval.q Q = N minMatR1 R
minmar1fval.o 1 ˙ = 1 R
minmar1fval.z 0 ˙ = 0 R
Assertion minmar1eval M B K N L N I N J N I K Q M L J = if I = K if J = L 1 ˙ 0 ˙ I M J

Proof

Step Hyp Ref Expression
1 minmar1fval.a A = N Mat R
2 minmar1fval.b B = Base A
3 minmar1fval.q Q = N minMatR1 R
4 minmar1fval.o 1 ˙ = 1 R
5 minmar1fval.z 0 ˙ = 0 R
6 1 2 3 4 5 minmar1val M B K N L N K Q M L = i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j
7 6 3expb M B K N L N K Q M L = i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j
8 7 3adant3 M B K N L N I N J N K Q M L = i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j
9 simp3l M B K N L N I N J N I N
10 simpl3r M B K N L N I N J N i = I J N
11 4 fvexi 1 ˙ V
12 5 fvexi 0 ˙ V
13 11 12 ifex if j = L 1 ˙ 0 ˙ V
14 ovex i M j V
15 13 14 ifex if i = K if j = L 1 ˙ 0 ˙ i M j V
16 15 a1i M B K N L N I N J N i = I j = J if i = K if j = L 1 ˙ 0 ˙ i M j V
17 eqeq1 i = I i = K I = K
18 17 adantr i = I j = J i = K I = K
19 eqeq1 j = J j = L J = L
20 19 adantl i = I j = J j = L J = L
21 20 ifbid i = I j = J if j = L 1 ˙ 0 ˙ = if J = L 1 ˙ 0 ˙
22 oveq12 i = I j = J i M j = I M J
23 18 21 22 ifbieq12d i = I j = J if i = K if j = L 1 ˙ 0 ˙ i M j = if I = K if J = L 1 ˙ 0 ˙ I M J
24 23 adantl M B K N L N I N J N i = I j = J if i = K if j = L 1 ˙ 0 ˙ i M j = if I = K if J = L 1 ˙ 0 ˙ I M J
25 9 10 16 24 ovmpodv2 M B K N L N I N J N K Q M L = i N , j N if i = K if j = L 1 ˙ 0 ˙ i M j I K Q M L J = if I = K if J = L 1 ˙ 0 ˙ I M J
26 8 25 mpd M B K N L N I N J N I K Q M L J = if I = K if J = L 1 ˙ 0 ˙ I M J