Metamath Proof Explorer


Theorem minmar1val0

Description: Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018)

Ref Expression
Hypotheses minmar1fval.a A = N Mat R
minmar1fval.b B = Base A
minmar1fval.q Q = N minMatR1 R
minmar1fval.o 1 ˙ = 1 R
minmar1fval.z 0 ˙ = 0 R
Assertion minmar1val0 M B Q M = k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j

Proof

Step Hyp Ref Expression
1 minmar1fval.a A = N Mat R
2 minmar1fval.b B = Base A
3 minmar1fval.q Q = N minMatR1 R
4 minmar1fval.o 1 ˙ = 1 R
5 minmar1fval.z 0 ˙ = 0 R
6 1 2 matrcl M B N Fin R V
7 6 simpld M B N Fin
8 mpoexga N Fin N Fin k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j V
9 7 7 8 syl2anc M B k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j V
10 oveq m = M i m j = i M j
11 10 ifeq2d m = M if i = k if j = l 1 ˙ 0 ˙ i m j = if i = k if j = l 1 ˙ 0 ˙ i M j
12 11 mpoeq3dv m = M i N , j N if i = k if j = l 1 ˙ 0 ˙ i m j = i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j
13 12 mpoeq3dv m = M k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i m j = k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j
14 1 2 3 4 5 minmar1fval Q = m B k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i m j
15 13 14 fvmptg M B k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j V Q M = k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j
16 9 15 mpdan M B Q M = k N , l N i N , j N if i = k if j = l 1 ˙ 0 ˙ i M j