Metamath Proof Explorer


Theorem mins1

Description: The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion mins1 A No B No if A s B A B s A

Proof

Step Hyp Ref Expression
1 iftrue A s B if A s B A B = A
2 1 adantl A No B No A s B if A s B A B = A
3 slerflex A No A s A
4 3 ad2antrr A No B No A s B A s A
5 2 4 eqbrtrd A No B No A s B if A s B A B s A
6 iffalse ¬ A s B if A s B A B = B
7 6 adantl A No B No ¬ A s B if A s B A B = B
8 sletric A No B No A s B B s A
9 8 orcanai A No B No ¬ A s B B s A
10 7 9 eqbrtrd A No B No ¬ A s B if A s B A B s A
11 5 10 pm2.61dan A No B No if A s B A B s A