Metamath Proof Explorer


Theorem mins2

Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion mins2 B No if A s B A B s B

Proof

Step Hyp Ref Expression
1 slerflex B No B s B
2 iffalse ¬ A s B if A s B A B = B
3 2 breq1d ¬ A s B if A s B A B s B B s B
4 1 3 syl5ibrcom B No ¬ A s B if A s B A B s B
5 iftrue A s B if A s B A B = A
6 id A s B A s B
7 5 6 eqbrtrd A s B if A s B A B s B
8 4 7 pm2.61d2 B No if A s B A B s B