Metamath Proof Explorer


Theorem minveco

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X = BaseSet U
minveco.m M = - v U
minveco.n N = norm CV U
minveco.y Y = BaseSet W
minveco.u φ U CPreHil OLD
minveco.w φ W SubSp U CBan
minveco.a φ A X
Assertion minveco φ ∃! x Y y Y N A M x N A M y

Proof

Step Hyp Ref Expression
1 minveco.x X = BaseSet U
2 minveco.m M = - v U
3 minveco.n N = norm CV U
4 minveco.y Y = BaseSet W
5 minveco.u φ U CPreHil OLD
6 minveco.w φ W SubSp U CBan
7 minveco.a φ A X
8 eqid IndMet U = IndMet U
9 eqid MetOpen IndMet U = MetOpen IndMet U
10 oveq2 j = y A M j = A M y
11 10 fveq2d j = y N A M j = N A M y
12 11 cbvmptv j Y N A M j = y Y N A M y
13 12 rneqi ran j Y N A M j = ran y Y N A M y
14 eqid sup ran j Y N A M j < = sup ran j Y N A M j <
15 1 2 3 4 5 6 7 8 9 13 14 minvecolem7 φ ∃! x Y y Y N A M x N A M y